[go: up one dir, main page]

login
Search: a006139 -id:a006139
     Sort: relevance | references | number | modified | created      Format: long | short | data
Duplicate of A006139.
+20
0
1, 2, 8, 32, 136, 592, 2624, 11776, 53344, 243392, 1116928, 5149696, 23835904
OFFSET
0,2
KEYWORD
dead
STATUS
approved
Central Delannoy numbers: a(n) = Sum_{k=0..n} C(n,k)*C(n+k,k).
(Formerly M2942 N1184)
+10
190
1, 3, 13, 63, 321, 1683, 8989, 48639, 265729, 1462563, 8097453, 45046719, 251595969, 1409933619, 7923848253, 44642381823, 252055236609, 1425834724419, 8079317057869, 45849429914943, 260543813797441, 1482376214227923, 8443414161166173, 48141245001931263
OFFSET
0,2
COMMENTS
Number of paths from (0,0) to (n,n) in an n X n grid using only steps north, northeast and east (i.e., steps (1,0), (1,1), and (0,1)).
Also the number of ways of aligning two sequences (e.g., of nucleotides or amino acids) of length n, with at most 2*n gaps (-) inserted, so that while unnecessary gappings: - -a a- - are forbidden, both b- and -b are allowed. (If only other of the latter is allowed, then the sequence A000984 gives the number of alignments.) There is an easy bijection from grid walks given by Dickau to such set of alignments (e.g., the straight diagonal corresponds to the perfect alignment with no gaps). - Antti Karttunen, Oct 10 2001
Also main diagonal of array A008288 defined by m(i,1) = m(1,j) = 1, m(i,j) = m(i-1,j-1) + m(i-1,j) + m(i,j-1). - Benoit Cloitre, May 03 2002
So, as a special case of Dmitry Zaitsev's Dec 10 2015 comment on A008288, a(n) is the number of points in Z^n that are L1 (Manhattan) distance <= n from any given point. These terms occur in the crystal ball sequences: a(n) here is the n-th term in the sequence for the n-dimensional cubic lattice. See A008288 for a list of crystal ball sequences (rows or columns of A008288). - Shel Kaphan, Dec 26 2022
a(n) is the number of n-matchings of a comb-like graph with 2*n teeth. Example: a(2) = 13 because the graph consisting of a horizontal path ABCD and the teeth Aa, Bb, Cc, Dd has 13 2-matchings: any of the six possible pairs of teeth and {Aa, BC}, {Aa, CD}, {Bb, CD}, {Cc, AB}, {Dd, AB}, {Dd, BC}, {AB, CD}. - Emeric Deutsch, Jul 02 2002
Number of ordered trees with 2*n+1 edges, having root of odd degree, nonroot nodes of outdegree at most 2 and branches of odd length. - Emeric Deutsch, Aug 02 2002
The sum of the first n coefficients of ((1 - x) / (1 - 2*x))^n is a(n-1). - Michael Somos, Sep 28 2003
Row sums of A063007 and A105870. - Paul Barry, Apr 23 2005
The Hankel transform (see A001906 for definition) of this sequence is A036442: 1, 4, 32, 512, 16384, ... . - Philippe Deléham, Jul 03 2005
Also number of paths from (0,0) to (n,0) using only steps U = (1,1), H = (1,0) and D =(1,-1), U can have 2 colors and H can have 3 colors. - N-E. Fahssi, Jan 27 2008
Equals row sums of triangle A152250 and INVERT transform of A109980: (1, 2, 8, 36, 172, 852, ...). - Gary W. Adamson, Nov 30 2008
Number of overpartitions in the n X n box (treat a walk of the type in the first comment as an overpartition, by interpreting a NE step as N, E with the part thus created being overlined). - William J. Keith, May 19 2017
Diagonal of rational functions 1/(1 - x - y - x*y), 1/(1 - x - y*z - x*y*z). - Gheorghe Coserea, Jul 03 2018
Dimensions of endomorphism algebras End(R^{(n)}) in the Delannoy category attached to the oligomorphic group of order preserving self-bijections of the real line. - Noah Snyder, Mar 22 2023
REFERENCES
Frits Beukers, Arithmetic properties of Picard-Fuchs equations, Séminaire de Théorie des nombres de Paris, 1982-83, Birkhäuser Boston, Inc.
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 593.
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 81.
L. Moser and W. Zayachkowski, Lattice paths with diagonal steps, Scripta Math., 26 (1961), 223-229.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics, Wadsworth, Vol. 2, 1999; see Example 6.3.8 and Problem 6.49.
D. B. West, Combinatorial Mathematics, Cambridge, 2021, p. 28.
LINKS
Chai Wah Wu, Table of n, a(n) for n = 0..1308 (all terms < 10^1000, first 201 terms from T. D. Noe)
M. Abrate, S. Barbero, U. Cerruti, and N. Murru, Fixed Sequences for a Generalization of the Binomial Interpolated Operator and for some Other Operators, J. Int. Seq. 14 (2011), #11.8.1.
B. Adamczewski, J. P. Bell, and E. Delaygue, Algebraic independence of G-functions and congruences "à la Lucas", arXiv:1603.04187 [math.NT], 2016.
J.-M. Autebert, A.-M. Décaillot, and S. R. Schwer, H.-A. Delannoy et les oeuvres posthumes d'Édouard Lucas, Gazette des Mathématiciens - no 95, Jan 2003 (in French).
J.-M. Autebert, M. Latapy, and S. R. Schwer, Le treillis des Chemins de Delannoy, Discrete Math., 258 (2002), 225-234.
J.-M. Autebert and S. R. Schwer, On generalized Delannoy paths, SIAM J. Discrete Math., 16(2) (2003), 208-223.
Cyril Banderier and Sylviane Schwer, Why Delannoy numbers?, arXiv:math/0411128 [math.CO], 2004.
Cyril Banderier and Sylviane Schwer, Why Delannoy numbers?, Journal of Statistical Planning and Inference, 135(1) (2005), 40-54.
Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, Journal of Integer Sequences, 9 (2006), #06.2.4.
Paul Barry, On the Central Coefficients of Riordan Matrices, Journal of Integer Sequences, 16 (2013), #13.5.1.
Paul Barry, On the Inverses of a Family of Pascal-Like Matrices Defined by Riordan Arrays, Journal of Integer Sequences, 16 (2013), #13.5.6.
Paul Barry, Jacobsthal Decompositions of Pascal's Triangle, Ternary Trees, and Alternating Sign Matrices, Journal of Integer Sequences, 19 (2016), #16.3.5.
Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, 15 (2012), #12.4.8.
Paul Barry, Moment sequences, transformations, and Spidernet graphs, arXiv:2307.00098 [math.CO], 2023.
Thomas Baruchel and C. Elsner, On error sums formed by rational approximations with split denominators, arXiv:1602.06445 [math.NT], 2016.
H. Bateman, Some problems in potential theory, Messenger Math., 52 (1922), 71-78. [Annotated scanned copy]
Raymond A. Beauregard and Vladimir A. Dobrushkin, Powers of a Class of Generating Functions, Mathematics Magazine, 89(5) (2016), 359-363.
Hacène Belbachir and Abdelghani Mehdaoui, Recurrence relation associated with the sums of square binomial coefficients, Quaestiones Mathematicae (2021) Vol. 44, Issue 5, 615-624.
Hacène Belbachir, Abdelghani Mehdaoui, and László Szalay, Diagonal Sums in the Pascal Pyramid, II: Applications, J. Int. Seq., 22 (2019), #19.3.5.
A. Bostan, S. Boukraa, J.-M. Maillard, and J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv:1507.03227 [math-ph], 2015.
J. S. Caughman et al., A note on lattice chains and Delannoy numbers, Discrete Math., 308 (2008), 2623-2628.
Jia-Yu Chen and Chen Wang, Congruences concerning generalized central trinomial coefficients, arXiv:2012.04523 [math.NT], 2020.
Johann Cigler, Some nice Hankel determinants, arXiv:1109.1449 [math.CO], 2011.
Johann Cigler and Christian Krattenthaler, Hankel determinants of linear combinations of moments of orthogonal polynomials, arXiv:2003.01676 [math.CO], 2020.
M. Coster, Email, Nov 1990.
F. D. Cunden, Statistical distribution of the Wigner-Smith time-delay matrix for chaotic cavities, arXiv:1412.2172 [cond-mat.mes-hall], 2014.
Emeric Deutsch and B. E. Sagan, Congruences for Catalan and Motzkin numbers and related sequences, J. Num. Theory 117 (2006), 191-215.
Ömür Deveci and Anthony G. Shannon, Some aspects of Neyman triangles and Delannoy arrays, Mathematica Montisnigri (2021) Vol. L, 36-43.
R. M. Dickau, Delannoy and Motzkin Numbers [Many illustrations].
T. Doslic, Seven lattice paths to log-convexity, Acta Appl. Mathem. 110(3) (2010), 1373-1392.
Tomislav Došlic and Darko Veljan, Logarithmic behavior of some combinatorial sequences, Discrete Math. 308(11) (2008), 2182-2212. MR2404544 (2009j:05019) - N. J. A. Sloane, May 01 2012
D. Drake, Bijections from Weighted Dyck Paths to Schröder Paths, J. Int. Seq. 13 (2010), #10.9.2.
Rui Duarte and António Guedes de Oliveira, Generating functions of lattice paths, Univ. do Porto (Portugal 2023).
M. Dziemianczuk, Generalizing Delannoy numbers via counting weighted lattice paths, INTEGERS, 13 (2013), #A54.
M. Dziemianczuk, On Directed Lattice Paths With Additional Vertical Steps, arXiv:1410.5747 [math.CO], 2014.
James East and Nicholas Ham, Lattice paths and submonoids of Z^2, arXiv:1811.05735 [math.CO], 2018.
Steffen Eger, On the Number of Many-to-Many Alignments of N Sequences, arXiv:1511.00622 [math.CO], 2015.
Luca Ferrari and Emanuele Munarini, Enumeration of edges in some lattices of paths, arXiv:1203.6792 [math.CO], 2012.
Luca Ferrari and Emanuele Munarini, Enumeration of edges in some lattices of paths, J. Int. Seq. 17 (2014), #14.1.5.
Seth Finkelstein, Letter to N. J. A. Sloane, Mar 24 1990, with attachments.
S. Garrabrant and I. Pak, Counting with irrational tiles, arXiv:1407.8222 [math.CO], 2014.
Joël Gay and Vincent Pilaud, The weak order on Weyl posets, arXiv:1804.06572 [math.CO], 2018.
Taras Goy and Mark Shattuck, Determinant identities for the Catalan, Motzkin and Schröder numbers, Art Disc. Appl. Math. (2023).
Nate Harman, Andrew Snowden, and Noah Snyder, The Delannoy Category, arxiv:2211.15392 [math.RT], 2023.
Tian-Xiao He, One-pth Riordan Arrays in the Construction of Identities, arXiv:2011.00173 [math.CO], 2020.
M. D. Hirschhorn, How many ways can a king cross the board?, Austral. Math. Soc. Gaz., 27 (2000), 104-106.
P.-Y. Huang, S.-C. Liu, and Y.-N. Yeh, Congruences of Finite Summations of the Coefficients in certain Generating Functions, The Electronic Journal of Combinatorics, 21 (2014), #P2.45.
Svante Janson, Patterns in random permutations avoiding some sets of multiple patterns, arXiv:1804.06071 [math.PR], 2018.
S. Kaparthi and H. R. Rao, Higher dimensional restricted lattice paths with diagonal steps, Discr. Appl. Math., 31 (1991), 279-289.
D. E. Knuth and N. J. A. Sloane, Correspondence, December 1999.
Daniel Krenn and Jeffrey Shallit, Strongly k-recursive sequences, arXiv:2401.14231 [cs.FL], 2024.
D. F. Lawden, On the Solution of Linear Difference Equations, Math. Gaz., 36 (1952), 193-196.
Huyile Liang, Yanni Pei, and Yi Wang, Analytic combinatorics of coordination numbers of cubic lattices, arXiv:2302.11856 [math.CO], 2023. See p. 4.
Huyile Liang, Jeffrey Remmel, and Sainan Zheng, Stieltjes moment sequences of polynomials, arXiv:1710.05795 [math.CO], 2017, see page 18.
Max A. Little and Ugur Kayas, Polymorphic dynamic programming by algebraic shortcut fusion, arXiv:2107.01752 [cs.DS], 2021.
Lily L. Liu, Positivity of three-term recurrence sequences, Electronic J. Combinatorics, 17 (2010), #R57.
R. Mestrovic, Lucas' theorem: its generalizations, extensions and applications (1878-2014), arXiv preprint arXiv:1409.3820 [math.NT], 2014.
Lili Mu and Sai-nan Zheng, On the Total Positivity of Delannoy-Like Triangles, Journal of Integer Sequences, 20 (2017), #17.1.6.
Leo Moser, Note 2487: King paths on a chessboard, Math. Gaz., 39 (1955), 54 (one page only).
Emanuele Munarini, Combinatorial properties of the antichains of a garland, Integers, 9 (2009), 353-374.
Tony D. Noe, On the Divisibility of Generalized Central Trinomial Coefficients, Journal of Integer Sequences, 9 (2006), #06.2.7.
P. Peart and W.-J. Woan, Generating Functions via Hankel and Stieltjes Matrices, J. Integer Seqs., 3 (2000), #00.2.1.
R. Pemantle and M. C. Wilson, Asymptotics of multivariate sequences, I: smooth points of the singular variety, arXiv:math/0003192 [math.CO], 2000.
C. de Jesús Pita Ruiz Velasco, Convolution and Sulanke Numbers, JIS 13 (2010), #10.1.8.
F. Qi, X.-T. Shi and B.-N. Guo, Some properties of the Schroder numbers, Indian J. Pure Appl. Math 47 (4) (2016) 717-732.
J. L. Ramírez and V. F. Sirvent, A Generalization of the k-Bonacci Sequence from Riordan Arrays, The Electronic Journal of Combinatorics, 22(1) (2015), #P1.38
J. Riordan, Letter, Jul 06 1978.
John Riordan, Letter to N. J. A. Sloane, Sep 26 1980 with notes on the 1973 Handbook of Integer Sequences. Note that the sequences are identified by their N-numbers, not their A-numbers.
S. Samieinia, The number of continuous curves in digital geometry, Research Reports in Mathematics, Number 3, 2008.
S. R. Schwer and J.-M. Auterbert, Henri-Auguste Delannoy, une biographie, Math. & Sci. hum. / Mathematical Social Sciences, 43e année, no. 174 (2006), 25-67.
Seunghyun Seo, The Catalan Threshold Arrangement, Journal of Integer Sequences, 20 (2017), #17.1.1.
M. Shattuck, On the zeros of some polynomials with combinatorial coefficients, Annales Mathematicae et Informaticae, 42 (2013), 93-101.
Zhao Shen, On the 3-adic valuation of a class of Apery-like numbers, arXiv:2112.11135 [math.NT], 2021.
J. B. Slowinski, The Number of Multiple Alignments, Molecular Phylogenetics and Evolution, 10(2) (1998), 264-266.
J. B. Slowinski, The Number of Multiple Alignments, Molecular Phylogenetics and Evolution, 10(2) (1998), 264-266.
R. G. Stanton and D. D. Cowan, Note on a "square" functional equation, SIAM Rev., 12 (1970), 277-279.
R. A. Sulanke, Moments of generalized Motzkin paths, J. Integer Sequences, 3 (2000), #00.1.
R. A. Sulanke, Objects Counted by the Central Delannoy Numbers, Journal of Integer Sequences, 5 (2002), #03.1.5.
R. A. Sulanke et al., Another description of the central Delannoy numbers, Problem 10894, Amer. Math. Monthly, 110(5) (2003), 443-444.
Zhi-Wei Sun, On Delannoy numbers and Schroeder numbers, Journal of Number Theory 131(12) (2011), 2387-2397. doi:10.1016/j.jnt.2011.06.005
Marius Tarnauceanu, The number of fuzzy subgroups of finite cyclic groups and Delannoy numbers, European Journal of Combinatorics 30(1) (2009), 283-287.
Bernhard Von Stengel, New maximal numbers of equilibria in bimatrix games, Discrete & Computational Geometry 21(4) (1999), 557-568. See Eq. (3.7).
Yi Wang, Sai-Nan Zheng, and Xi Chen, Analytic aspects of Delannoy numbers, Discrete Mathematics 342.8 (2019): 2270-2277.
Eric Weisstein's World of Mathematics, Delannoy Number.
Eric Weisstein's World of Mathematics, Schmidt's Problem.
W.-J. Woan, Hankel Matrices and Lattice Paths, J. Integer Sequences, 4 (2001), #01.1.2.
E. X. W. Xia and O. X. M. Yao, A Criterion for the Log-Convexity of Combinatorial Sequences, The Electronic Journal of Combinatorics, 20 (2013), #P3.
Lin Yang, Yu-Yuan Zhang, and Sheng-Liang Yang, The halves of Delannoy matrix and Chung-Feller properties of the m-Schröder paths, Linear Alg. Appl. (2024).
FORMULA
a(n) = P_n(3), where P_n is n-th Legendre polynomial.
G.f.: 1 / sqrt(1 - 6*x + x^2).
a(n) = a(n-1) + 2*A002002(n) = Sum_{j} A063007(n, j). - Henry Bottomley, Jul 02 2001
Dominant term in asymptotic expansion is binomial(2*n, n)/2^(1/4)*((sqrt(2) + 1)/2)^(2*n + 1)*(1 + c_1/n + c_2/n^2 + ...). - Michael David Hirschhorn
a(n) = Sum_{i=0..n} (A000079(i)*A008459(n, i)) = Sum_{i=0..n} (2^i * C(n, i)^2). - Antti Karttunen, Oct 10 2001
a(n) = Sum_{k=0..n} C(n+k, n-k)*C(2*k, k). - Benoit Cloitre, Feb 13 2003
a(n) = Sum_{k=0..n} C(n, k)^2 * 2^k. - Michael Somos, Oct 08 2003
a(n - 1) = coefficient of x^n in A120588(x)^n if n>=0. - Michael Somos, Apr 11 2012
G.f. of a(n-1) = 1 / (1 - x / (1 - 2*x / (1 - 2*x / (1 - x / (1 - 2*x / (1 - x / ...)))))). - Michael Somos, May 11 2012
INVERT transform is A109980. BINOMIAL transform is A080609. BINOMIAL transform of A006139. PSUM transform is A089165. PSUMSIGN transform is A026933. First backward difference is A110170. - Michael Somos, May 11 2012
E.g.f.: exp(3*x)*BesselI(0, 2*sqrt(2)*x). - Vladeta Jovovic, Mar 21 2004
a(n) = Sum_{k=0..n} C(2*n-k, n)*C(n, k). - Paul Barry, Apr 23 2005
a(n) = Sum_{k>=n} binomial(k, n)^2/2^(k+1). - Vladeta Jovovic, Aug 25 2006
a(n) = a(-1 - n) for all n in Z. - Michael Somos, Sep 23 2006
D-finite with recurrence: a(-1) = a(0) = 1; n*a(n) = 3*(2*n-1)*a(n-1) - (n-1)*a(n-2). Eq (4) in T. D. Noe's article in JIS 9 (2006) #06.2.7.
Define general Delannoy numbers by (i,j > 0): d(i,0) = d(0,j) = 1 =: d(0,0) and d(i,j) = d(i-1,j-1) + d(i-2,j-1) + d(i-1,j). Then a(k) = Sum_{j >= 0} d(k,j)^2 + d(k-1,j)^2 = A026933(n)+A026933(n-1). This is a special case of the following formula for general Delannoy numbers: d(k,j) = Sum_{i >= 0, p=0..n} d(p, i) * d(n-p, j-i) + d(p-1, i) * d(n-p-1, j-i-1). - Peter E John, Oct 19 2006
Coefficient of x^n in (1 + 3*x + 2*x^2)^n. - N-E. Fahssi, Jan 11 2008
a(n) = A008288(A046092(n)). - Philippe Deléham, Apr 08 2009
G.f.: 1/(1 - x - 2*x/(1 - x - x/(1 - x - x/(1 - x - x/(1 - ... (continued fraction). - Paul Barry, May 28 2009
G.f.: d/dx log(1/(1 - x*A001003(x))). - Vladimir Kruchinin, Apr 19 2011
G.f.: 1/(2*Q(0) + x - 1) where Q(k) = 1 + k*(1-x) - x - x*(k + 1)*(k + 2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Mar 14 2013
a(n) = Sum_{k=0..n} C(n,k) * C(n+k,k). - Joerg Arndt, May 11 2013
G.f.: G(0), where G(k) = 1 + x*(6 - x)*(4*k + 1)/(4*k + 2 - 2*x*(6-x)*(2*k + 1)*(4*k + 3)/(x*(6 - x)*(4*k + 3) + 4*(k + 1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 22 2013
G.f.: 2/G(0), where G(k) = 1 + 1/(1 - x*(6 - x)*(2*k - 1)/(x*(6 - x)*(2*k - 1) + 2*(k + 1)/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 16 2013
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(6 - x)*(2*k + 1)/(x*(6 - x)*(2*k + 1) + 2*(k + 1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jul 17 2013
a(n)^2 = Sum_{k=0..n} 2^k * C(2*k, k)^2 * C(n+k, n-k) = A243949(n). - Paul D. Hanna, Aug 17 2014
a(n) = hypergeom([-n, -n], [1], 2). - Peter Luschny, Nov 19 2014
a(n) = Sum_{k=0..n/2} C(n-k,k) * 3^(n-2*k) * 2^k * C(n,k). - Vladimir Kruchinin, Jun 29 2015
a(n) = A049600(n, n-1).
a(n) = Sum_{0 <= j, k <= n} (-1)^(n+j)*C(n,k)*C(n,j)*C(n+k,k)*C(n+k+j,k+j). Cf. A126086 and A274668. - Peter Bala, Jan 15 2020
a(n) ~ c * (3 + 2*sqrt(2))^n / sqrt(n), where c = 1/sqrt(4*Pi*(3*sqrt(2)-4)) = 0.572681... (Banderier and Schwer, 2005). - Amiram Eldar, Jun 07 2020
a(n+1) = 3*a(n) + 2*Sum_{l=1..n} A006318(l)*a(n-l). [Eq. (1.16) in Qi-Shi-Guo (2016)]
a(n) ~ (1 + sqrt(2))^(2*n+1) / (2^(5/4) * sqrt(Pi*n)). - Vaclav Kotesovec, Jan 09 2023
a(n-1) + a(n) = A241023(n) for n >= 1. - Peter Bala, Sep 18 2024
EXAMPLE
G.f. = 1 + 3*x + 13*x^2 + 63*x^3 + 321*x^4 + 1683*x^5 + 8989*x^6 + ...
MAPLE
seq(add(multinomial(n+k, n-k, k, k), k=0..n), n=0..20); # Zerinvary Lajos, Oct 18 2006
seq(orthopoly[P](n, 3), n=0..100); # Robert Israel, Nov 03 2015
MATHEMATICA
f[n_] := Sum[ Binomial[n, k] Binomial[n + k, k], {k, 0, n}]; Array[f, 21, 0] (* Or *)
a[0] = 1; a[1] = 3; a[n_] := a[n] = (3(2 n - 1)a[n - 1] - (n - 1)a[n - 2])/n; Array[a, 21, 0] (* Or *)
CoefficientList[ Series[1/Sqrt[1 - 6x + x^2], {x, 0, 20}], x] (* Robert G. Wilson v *)
Table[LegendreP[n, 3], {n, 0, 22}] (* Jean-François Alcover, Jul 16 2012, from first formula *)
a[n_] := Hypergeometric2F1[-n, n+1, 1, -1]; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Feb 26 2013 *)
a[ n_] := With[ {m = If[n < 0, -1 - n, n]}, SeriesCoefficient[ (1 - 6 x + x^2)^(-1/2), {x, 0, m}]]; (* Michael Somos, Jun 10 2015 *)
PROG
(PARI) {a(n) = if( n<0, n = -1 - n); polcoeff( 1 / sqrt(1 - 6*x + x^2 + x * O(x^n)), n)}; /* Michael Somos, Sep 23 2006 */
(PARI) {a(n) = if( n<0, n = -1 - n); subst( pollegendre(n), x, 3)}; /* Michael Somos, Sep 23 2006 */
(PARI) {a(n) = if( n<0, n = -1 - n); n++; subst( Pol(((1 - x) / (1 - 2*x) + O(x^n))^n), x, 1); } /* Michael Somos, Sep 23 2006 */
(PARI) a(n)=if(n<0, 0, polcoeff((1+3*x+2*x^2)^n, n)) \\ Paul Barry, Aug 22 2007
(PARI) /* same as in A092566 but use */
steps=[[1, 0], [0, 1], [1, 1]]; /* Joerg Arndt, Jun 30 2011 */
(PARI) a(n)=sum(k=0, n, binomial(n, k)*binomial(n+k, k)); \\ Joerg Arndt, May 11 2013
(PARI) x='x+O('x^100); Vec(1/sqrt(1 - 6*x + x^2)) \\ Altug Alkan, Oct 17 2015
(Python) # from Nick Hobson.
def f(a, b):
if a == 0 or b == 0:
return 1
return f(a, b - 1) + f(a - 1, b) + f(a - 1, b - 1)
[f(n, n) for n in range(7)]
(Python)
from gmpy2 import divexact
A001850 = [1, 3]
for n in range(2, 10**3):
A001850.append(divexact(A001850[-1]*(6*n-3)-(n-1)*A001850[-2], n))
# Chai Wah Wu, Sep 01 2014
(Maxima) a(n):=coeff(expand((1+3*x+2*x^2)^n), x, n);
makelist(a(n), n, 0, 12); /* Emanuele Munarini, Mar 02 2011 */
(Sage)
a = lambda n: hypergeometric([-n, -n], [1], 2)
[simplify(a(n)) for n in range(23)] # Peter Luschny, Nov 19 2014
CROSSREFS
Main diagonal of A064861.
Column k=2 of A262809 and A263159.
KEYWORD
nonn,easy,nice
EXTENSIONS
New name and reference Sep 15 1995
Formula and more references from Don Knuth, May 15 1996
STATUS
approved
Decimal expansion of Pi/4.
+10
93
7, 8, 5, 3, 9, 8, 1, 6, 3, 3, 9, 7, 4, 4, 8, 3, 0, 9, 6, 1, 5, 6, 6, 0, 8, 4, 5, 8, 1, 9, 8, 7, 5, 7, 2, 1, 0, 4, 9, 2, 9, 2, 3, 4, 9, 8, 4, 3, 7, 7, 6, 4, 5, 5, 2, 4, 3, 7, 3, 6, 1, 4, 8, 0, 7, 6, 9, 5, 4, 1, 0, 1, 5, 7, 1, 5, 5, 2, 2, 4, 9, 6, 5, 7, 0, 0, 8, 7, 0, 6, 3, 3, 5, 5, 2, 9, 2, 6, 6, 9, 9, 5, 5, 3, 7
OFFSET
0,1
COMMENTS
Also the ratio of the area of a circle to the circumscribed square. More generally, the ratio of the area of an ellipse to the circumscribed rectangle. Also the ratio of the volume of a cylinder to the circumscribed cube. - Omar E. Pol, Sep 25 2013
Also the surface area of a quarter-sphere of diameter 1. - Omar E. Pol, Oct 03 2013
Least positive solution to sin(x) = cos(x). - Franklin T. Adams-Watters, Jun 17 2014
Dirichlet L-series of the non-principal character modulo 4 (A101455) at 1. See e.g. Table 22 of arXiv:1008.2547. - R. J. Mathar, May 27 2016
This constant is also equal to the infinite sum of the arctangent functions with nested radicals consisting of square roots of two. Specifically, one of the Viete-like formulas for Pi is given by Pi/4 = Sum_{k = 2..oo} arctan(sqrt(2 - a_{k - 1})/a_k), where the nested radicals are defined by recurrence relations a_k = sqrt(2 + a_{k - 1}) and a_1 = sqrt(2) (see the article [Abrarov and Quine]). - Sanjar Abrarov, Jan 09 2017
Pi/4 is the area enclosed between circumcircle and incircle of a regular polygon of unit side. - Mohammed Yaseen, Nov 29 2023
REFERENCES
Jörg Arndt and Christoph Haenel, Pi: Algorithmen, Computer, Arithmetik, Springer 2000, p. 150.
Douglas R. Hofstadter, Gödel, Escher, Bach: An Eternal Golden Braid, Basic Books, p. 408.
J. Rivaud, Analyse, Séries, équations différentielles, Mathématiques supérieures et spéciales, Premier cycle universitaire, Vuibert, 1981, Exercice 3, p. 136.
LINKS
Sanjar M. Abrarov and Brendan M. Quine, A Viète-like formula for pi based on infinite sum of the arctangent functions with nested radicals, figshare, 4509014, (2017).
Jonathan M. Borwein, Peter B. Borwein, and Karl Dilcher, Pi, Euler numbers and asymptotic expansions, Amer. Math. Monthly, 96 (1989), 681-687.
Ronald K. Hoeflin, Titan Test.
Richard J. Mathar, Table of Dirichlet L-Series and Prime Zeta Modulo Functions for Small Moduli, arXiv:1008.2547 [math.NT], 2010-2015.
Michael Penn, A surprising appearance of pie!, YouTube video, 2020.
Michael Penn, Transforming normal identities into "crazy" ones, YouTube video, 2022.
Srinivasa Ramanujan, Question 353, J. Ind. Math. Soc.
Eric Weisstein's World of Mathematics, Prime Products.
FORMULA
Equals Integral_{x=0..oo} sin(2x)/(2x) dx.
Equals lim_{n->oo} n*A001586(n-1)/A001586(n) (conjecture). - Mats Granvik, Feb 23 2011
Equals Integral_{x=0..1} 1/(1+x^2) dx. - Gary W. Adamson, Jun 22 2003
Equals Integral_{x=0..Pi/2} sin(x)^2 dx, or Integral_{x=0..Pi/2} cos(x)^2 dx. - Jean-François Alcover, Mar 26 2013
Equals (Sum_{x=0..oo} sin(x)*cos(x)/x) - 1/2. - Bruno Berselli, May 13 2013
Equals (-digamma(1/4) + digamma(3/4))/4. - Jean-François Alcover, May 31 2013
Equals Sum_{n>=0} (-1)^n/(2*n+1). - Geoffrey Critzer, Nov 03 2013
Equals Integral_{x=0..1} Product_{k>=1} (1-x^(8*k))^3 dx [cf. A258414]. - Vaclav Kotesovec, May 30 2015
Equals Product_{k in A071904} (if k mod 4 = 1 then (k-1)/(k+1)) else (if k mod 4 = 3 then (k+1)/(k-1)). - Dimitris Valianatos, Oct 05 2016
From Peter Bala, Nov 15 2016: (Start)
For N even: 2*(Pi/4 - Sum_{k = 1..N/2} (-1)^(k-1)/(2*k - 1)) ~ (-1)^(N/2)*(1/N - 1/N^3 + 5/N^5 - 61/N^7 + 1385/N^9 - ...), where the sequence of unsigned coefficients [1, 1, 5, 61, 1385, ...] is A000364. See Borwein et al., Theorem 1 (a).
For N odd: 2*(Pi/4 - Sum_{k = 1..(N-1)/2} (-1)^(k-1)/(2*k - 1)) ~ (-1)^((N-1)/2)*(1/N - 1/N^2 + 2/N^4 - 16/N^6 + 272/N^8 - ...), where the sequence of unsigned coefficients [1, 1, 2, 16, 272, ...] is A000182 with an extra initial term of 1.
For N = 0,1,2,... and m = 1,3,5,... there holds Pi/4 = (2*N)! * m^(2*N) * Sum_{k >= 0} ( (-1)^(N+k) * 1/Product_{j = -N..N} (2*k + 1 + 2*m*j) ); when N = 0 we get the Madhava-Gregory-Leibniz series for Pi/4.
For examples of asymptotic expansions for the tails of these series representations for Pi/4 see A024235 (case N = 1, m = 1), A278080 (case N = 2, m = 1) and A278195 (case N = 3, m = 1).
For N = 0,1,2,..., Pi/4 = 4^(N-1)*N!/(2*N)! * Sum_{k >= 0} 2^(k+1)*(k + N)!* (k + 2*N)!/(2*k + 2*N + 1)!, follows by applying Euler's series transformation to the above series representation for Pi/4 in the case m = 1. (End)
From Peter Bala, Nov 05 2019: (Start)
For k = 0,1,2,..., Pi/4 = k!*Sum_{n = -oo..oo} 1/((4*n+1)*(4*n+3)* ...*(4*n+2*k+1)), where Sum_{n = -oo..oo} f(n) is understood as lim_{j -> oo} Sum_{n = -j..j} f(n).
Equals Integral_{x = 0..oo} sin(x)^4/x^2 dx = Sum_{n >= 1} sin(n)^4/n^2, by the Abel-Plana formula.
Equals Integral_{x = 0..oo} sin(x)^3/x dx = Sum_{n >= 1} sin(n)^3/n, by the Abel-Plana formula. (End)
From Amiram Eldar, Aug 19 2020: (Start)
Equals arcsin(1/sqrt(2)).
Equals Product_{k>=1} (1 - 1/(2*k+1)^2).
Equals Integral_{x=0..oo} x/(x^4 + 1) dx.
Equals Integral_{x=0..oo} 1/(x^2 + 4) dx. (End)
With offset 1, equals 5 * Pi / 2. - Sean A. Irvine, Aug 19 2021
Equals (1/2)!^2 = Gamma(3/2)^2. - Gary W. Adamson, Aug 23 2021
Equals Integral_{x = 0..oo} exp(-x)*sin(x)/x dx (see Rivaud reference). - Bernard Schott, Jan 28 2022
From Amiram Eldar, Nov 06 2023: (Start)
Equals beta(1), where beta is the Dirichlet beta function.
Equals Product_{p prime >= 3} (1 - (-1)^((p-1)/2)/p)^(-1). (End)
Equals arctan( F(1)/F(4) ) + arctan( F(2)/F(3) ), where F(1), F(2), F(3), and F(4) are any four consecutive Fibonacci numbers. - Gary W. Adamson, Mar 03 2024
Pi/4 = Sum_{n >= 1} i/(n*P(n, i)*P(n-1, i)) = (1/2)*Sum_{n >= 1} (-1)^(n+1)*4^n/(n*A006139(n)*A006139(n-1)), where i = sqrt(-1) and P(n, x) denotes the n-th Legendre polynomial. The n-th summand of the series is O( 1/(3 + 2*sqrt(3))^n ). - Peter Bala, Mar 16 2024
Equals arctan( phi^(-3) ) + arctan(phi^(-1) ). - Gary W. Adamson, Mar 27 2024
Equals Sum_{n>=1} eta(n)/2^n, where eta(n) is the Dirichlet eta function. - Antonio Graciá Llorente, Oct 04 2024
EXAMPLE
0.785398163397448309615660845819875721049292349843776455243736148...
N = 2, m = 6: Pi/4 = 4!*3^4 Sum_{k >= 0} (-1)^k/((2*k - 11)*(2*k - 5)*(2*k + 1)*(2*k + 7)*(2*k + 13)). - Peter Bala, Nov 15 2016
MAPLE
evalf(Pi/4) ;
MATHEMATICA
RealDigits[N[Pi/4, 6! ]] (* Vladimir Joseph Stephan Orlovsky, Dec 02 2009 *)
(* PROGRAM STARTS *)
(* Define the nested radicals a_k by recurrence *)
a[k_] := Nest[Sqrt[2 + #1] & , 0, k]
(* Example of Pi/4 approximation at K = 100 *)
Print["The actual value of Pi/4 is"]
N[Pi/4, 40]
Print["At K = 100 the approximated value of Pi/4 is"]
K := 100; (* the truncating integer *)
N[Sum[ArcTan[Sqrt[2 - a[k - 1]]/a[k]], {k, 2, K}], 40] (* equation (8) *)
(* Error terms for Pi/4 approximations *)
Print["Error terms for Pi/4"]
k := 1; (* initial value of the index k *)
K := 10; (* initial value of the truncating integer K *)
sqn := {}; (* initiate the sequence *)
AppendTo[sqn, {"Truncating integer K ", " Error term in Pi/4"}];
While[K <= 30,
AppendTo[sqn, {K,
N[Pi/4 - Sum[ArcTan[Sqrt[2 - a[k - 1]]/a[k]], {k, 2, K}], 1000] //
N}]; K++]
Print[MatrixForm[sqn]]
(* Sanjar Abrarov, Jan 09 2017 *)
PROG
(Haskell) -- see link: Literate Programs
import Data.Char (digitToInt)
a003881_list len = map digitToInt $ show $ machin `div` (10 ^ 10) where
machin = 4 * arccot 5 unity - arccot 239 unity
unity = 10 ^ (len + 10)
arccot x unity = arccot' x unity 0 (unity `div` x) 1 1 where
arccot' x unity summa xpow n sign
| term == 0 = summa
| otherwise = arccot'
x unity (summa + sign * term) (xpow `div` x ^ 2) (n + 2) (- sign)
where term = xpow `div` n
-- Reinhard Zumkeller, Nov 20 2012
(SageMath) # Leibniz/Cohen/Villegas/Zagier/Arndt/Haenel
def FastLeibniz(n):
b = 2^(2*n-1); c = b; s = 0
for k in range(n-1, -1, -1):
t = 2*k+1
s = s + c/t if is_even(k) else s - c/t
b *= (t*(k+1))/(2*(n-k)*(n+k))
c += b
return s/c
A003881 = RealField(3333)(FastLeibniz(1330))
print(A003881) # Peter Luschny, Nov 20 2012
(PARI) Pi/4 \\ Charles R Greathouse IV, Jul 07 2014
(Magma) R:= RealField(100); Pi(R)/4; // G. C. Greubel, Mar 08 2018
CROSSREFS
Cf. A006752 (beta(2)=Catalan), A153071 (beta(3)), A175572 (beta(4)), A175571 (beta(5)), A175570 (beta(6)), A258814 (beta(7)), A258815 (beta(8)), A258816 (beta(9)).
Cf. A001622.
KEYWORD
nonn,cons,easy
EXTENSIONS
a(98) and a(99) corrected by Reinhard Zumkeller, Nov 20 2012
STATUS
approved
a(n) = 2^((n-1)*(n+2)/2).
+10
29
1, 4, 32, 512, 16384, 1048576, 134217728, 34359738368, 17592186044416, 18014398509481984, 36893488147419103232, 151115727451828646838272, 1237940039285380274899124224, 20282409603651670423947251286016, 664613997892457936451903530140172288
OFFSET
1,2
COMMENTS
Number of redundant paths for a fault-tolerant ATM switch.
Hankel transform (see A001906 for definition ) of A001850, A006139, A084601; also Hankel transform of the sequence 1, 0, 4, 0, 24, 0, 160, 0, 1120, ... (A059304 with interpolated zeros). - Philippe Deléham, Jul 03 2005
Hankel transform of A109980. Unsigned version of A127945. - Philippe Deléham, Dec 11 2008
a(n) = the multiplicative Wiener index of the wheel graph with n+3 vertices. The multiplicative Wiener index of a connected simple graph G is defined as the product of the distances between all pairs of distinct vertices of G. The wheel graph with n+3 vertices has (n+3)(n+2)/2 pairs of distinct vertices, of which 2(n+2) are adjacent; each of the remaining (n+2)(n-1)/2 pairs are at distance 2; consequently, the multiplicative Wiener index is 2^((n-1)(n+2)/2) = a(n). - Emeric Deutsch, Aug 17 2015
LINKS
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
I. Gutman, W. Linert, I. Lukovits, and Z. Tomovic, The multiplicative version of the Wiener index, J. Chem. Inf. Comput. Sci., 40, 2000, 113-116.
C. Lo and C. Chiu, A Fault-Tolerant Architecture for ATM Networks, 20th IEEE Conf. Local Computer Networks, 1995, pp. 29-36
FORMULA
a(1) = 1, a(n) = a(n-1) * 2^n. - Vincenzo Librandi, Oct 24 2012
MATHEMATICA
Table[2^((n-1) * (n+2)/2), {n, 1, 30}] (* Vincenzo Librandi, Oct 24 2012 *)
PROG
(Magma) I:=[1]; [n le 1 select I[n] else Self(n-1)*2^n: n in [1..20]]; // Vincenzo Librandi, Oct 24 2012
(PARI) a(n)=2^((n-1)*(n+2)/2) \\ Charles R Greathouse IV, Oct 24 2012
(Maxima) A036442[n]:=2^((n-1)*(n+2)/2)$
makelist(A036442[n], n, 1, 30); /* Martin Ettl, Oct 29 2012 */
KEYWORD
easy,nonn
AUTHOR
Abdallah Rayhan (rayhan(AT)engr.uvic.ca)
STATUS
approved
a(n+2) = (2n+3)*a(n+1) + (n+1)^2*a(n), a(0) = 1, a(1) = 1.
+10
13
1, 1, 4, 24, 204, 2220, 29520, 463680, 8401680, 172504080, 3958113600, 100370793600, 2787459998400, 84139894238400, 2742857884166400, 96034297911552000, 3594206259195552000, 143193586818810528000, 6050501147565883008000, 270263264589232282368000
OFFSET
0,3
COMMENTS
a(n) is the number of n-letter words from an n-letter alphabet such that no letter appears more than twice. - Paul Boddington, Nov 17 2003
FORMULA
E.g.f.: A(x) = (1 - 2*x - x^2)^(-1/2). - Paul Boddington, Nov 17 2003
a(n) = n!/2^n*A006139(n) = n!*Sum_{k=floor(n/2)..n} 2^(k-n)*C(n, k)*C(k, n-k). Sum_{n>=0} a(n)*x^n/n!^2 = exp(x)*BesselI(0, sqrt(2)*x). a(n) is the central coefficient of n!*(1+x+x^2/2)^n. - Vladeta Jovovic, Mar 22 2004
From Peter Bala, Aug 25 2011: (Start)
The function B(x) := int {t=0..x} A(t), obtained by integrating the generating function A(x), satisfies the autonomous differential equation d/dx(B(x)) = 1/(cos(B(x))-sin(B(x))). Compare with A190392.
Thus B(x), and hence A(x), can be found by inverting the function int {t=0..x} (cos(t)-sin(t)). By applying [Dominici, Theorem 4.1] the result can be expressed as
A(x) = 1 + sum {n>=1} D^n[1/(cos(t)-sin(t))](0)*x^n/n!, where the nested derivative D^n[f](x) of a function f(x) is defined recursively as D^0[f](x) = 1 and D^(n+1)[f](x) = d/dx(f(x)*D^n[f](x)) for n >= 0. Thus a(n) = D^n[1/(cos(t)-sin(t))](0). (End)
E.g.f. at offset 1: Series_Reversion(cos(x) + sin(x) - 1). - Paul D. Hanna, Aug 08 2012
a(n) ~ (1+sqrt(2))^(n+1/2) * n^n / (2^(1/4) * exp(n)). - Vaclav Kotesovec, Feb 18 2017
MAPLE
f := proc(n) option remember; if n <= 1 then 1 else (2*n-1)*f(n-1) +(n-1)^2*f(n-2); fi; end;
MATHEMATICA
Range[0, 20]! CoefficientList[Series[1/(1-2x-x^2)^(1/2), {x, 0, 20}], x] (* Geoffrey Critzer, Dec 07 2011 *)
PROG
(PARI) {a(n)=local(X=x+x^2*O(x^n)); (n+1)!*polcoeff(serreverse(cos(X)+sin(X)-1), n+1)} \\ Paul D. Hanna, Aug 08 2012
CROSSREFS
KEYWORD
nonn,easy
STATUS
approved
Expansion of 1/sqrt(1-4*x^2-4*x^3).
+10
8
1, 0, 2, 2, 6, 12, 26, 60, 130, 300, 672, 1540, 3514, 8064, 18552, 42756, 98802, 228624, 530024, 1230372, 2860000, 6655792, 15505932, 36159552, 84398626, 197154984, 460903796, 1078251044, 2524144224, 5912535672, 13857378300, 32495267712
OFFSET
0,3
COMMENTS
Diagonal sums of number triangle A115951.
Number of lattice paths from (0,0) to (n,n) using steps (2,1), (1,0), (1,2). - Joerg Arndt, Jul 05 2011
Diagonal of rational function 1/(1 - (x^2 + y^2 + x^3*y)). - Seiichi Manyama, Mar 22 2023
LINKS
FORMULA
a(n) = Sum_{k=0..floor(n/2)} C(2*k,k)*C(k,n-2*k).
G.f.: Q(0), where Q(k) = 1 + 4*x*(x+x^2)*(4*k+1) / (4*k+2 - 4*x*(x+x^2)*(4*k+2)*(4*k+3) / (4*x*(x+x^2)*(4*k+3) + 4*(k+1) / Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Sep 14 2013
D-finite with recurrence: n*a(n) - 4*(n-1)*a(n-2) - 2*(2*n-3)*a(n-3)=0. - R. J. Mathar, Jan 14 2020
MAPLE
A115962 := proc(n)
option remember;
if n < 4 then
op(n+1, [1, 0, 2, 2]);
else
4*(n-1)*procname(n-2)+2*(2*n-3)*procname(n-3) ;
%/n ;
end if;
end proc:
seq(A115962(n), n=0..20) ; # R. J. Mathar, Jan 14 2020
MATHEMATICA
CoefficientList[Series[1/Sqrt[1-4x^2-4x^3], {x, 0, 35}], x] (* or *) Table[Sum[Binomial[2k, k] Binomial[k, n-2k], {k, 0, Floor[n/2]}], {n, 0, 35}] (* Michael De Vlieger, Sep 03 2015 *)
PROG
(PARI) x = xx+O(xx^40); Vec(1/sqrt(1-4*x^2-4*x^3)) \\ Michel Marcus, Sep 03 2015
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( 1/Sqrt(1-4*x^2-4*x^3) )); // G. C. Greubel, May 06 2019
(Sage) (1/sqrt(1-4*x^2-4*x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 06 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Mar 14 2006
STATUS
approved
Expansion of 1/sqrt(1 - 4*x/(1+x)^3).
+10
7
1, 2, 0, -4, -4, 6, 18, 4, -48, -70, 60, 288, 170, -686, -1386, 432, 4928, 4806, -9684, -27572, -3672, 84106, 118162, -122388, -537834, -284830, 1386840, 2688944, -1103362, -10181934, -9354198, 21404728, 57921144, 3663942, -185437360, -248708676, 292137656
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(2*k,k) * binomial(n+2*k-1,n-k).
n*a(n) = -( -2*a(n-1) + (2*n)*a(n-2) + 4*(n-3)*a(n-3) + (n-4)*a(n-4) ) for n > 3.
a(0) = 1; a(n) = (2/n) * Sum_{k=0..n-1} (-1)^(n-1-k) * (n+k) * binomial(n+1-k,2) * a(k).
a(n) = (-1)^(n+1)*n*(n + 1)*hypergeom([3/2, 1-n, 1+n/2, (3+n)/2], [4/3, 5/3, 2], 2^4/3^3) for n > 0. - Stefano Spezia, Jul 11 2024
MATHEMATICA
a[n_]:=(-1)^(n+1)n(n+1)HypergeometricPFQ[{3/2, 1-n, 1+n/2, (3+n)/2}, {4/3, 5/3, 2}, 2^4/3^3]; Join[{1}, Array[a, 36]] (* Stefano Spezia, Jul 11 2024 *)
PROG
(PARI) my(N=40, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1+x)^3))
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Mar 24 2023
STATUS
approved
a(n) = Sum_{k=0..floor(n/4)} binomial(n-3*k,k) * binomial(2*(n-3*k),n-3*k).
+10
7
1, 2, 6, 20, 72, 264, 984, 3712, 14136, 54224, 209200, 810912, 3155616, 12320512, 48239232, 189336192, 744722400, 2934759360, 11584470336, 45796087680, 181285742592, 718498695424, 2850802065152, 11322567705600, 45011437903104, 179088911779328
OFFSET
0,2
COMMENTS
Diagonal of rational function 1/(1 - (x + y + x^4*y^3)). - Seiichi Manyama, Mar 23 2023
LINKS
FORMULA
G.f.: 1/sqrt(1 - 4*x*(1 + x^3)).
n*a(n) = 2*(2*n-1)*a(n-1) + 2*(2*n-4)*a(n-4).
a(n) ~ 1 / (2*sqrt((1 - 3*r)*Pi*n) * r^n), where r = 0.2463187933841190115229... is the positive real root of the equation -1 + 4*r + 4*r^4 = 0. - Vaclav Kotesovec, Mar 23 2023
MATHEMATICA
Table[Sum[Binomial[n-3k, k]Binomial[2(n-3k), n-3k], {k, 0, Floor[n/3]}], {n, 0, 30}] (* Harvey P. Dale, May 27 2024 *)
PROG
(PARI) a(n) = sum(k=0, n\4, binomial(n-3*k, k)*binomial(2*(n-3*k), n-3*k));
(PARI) my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x*(1+x^3)))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 31 2023
STATUS
approved
Expansion of 1/sqrt(1 - 4*x/(1+x)^4).
+10
7
1, 2, -2, -8, 6, 42, -8, -228, -90, 1210, 1238, -6116, -10864, 28574, 80932, -116248, -548010, 339678, 3455686, 173208, -20452674, -14036418, 113365140, 156407916, -580805472, -1312098918, 2659610562, 9621079540, -9902139124, -64566648122, 18521111032
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(2*k,k) * binomial(n+3*k-1,n-k).
n*a(n) = -( (n-3)*a(n-1) + (6*n-6)*a(n-2) + 10*(n-3)*a(n-3) + 5*(n-4)*a(n-4) + (n-5)*a(n-5) ) for n > 4.
a(0) = 1; a(n) = (2/n) * Sum_{k=0..n-1} (-1)^(n-1-k) * (n+k) * binomial(n+2-k,3) * a(k).
a(n) = (-1)^(n+1)*Pochhammer(n,3)*hypergeom([1-n, 1+n/3, (4+n)/3, (5+n)/3], [5/4, 7/4, 2], 3^3/2^6)/3 for n > 0. - Stefano Spezia, Jul 11 2024
MATHEMATICA
a[n_]:=(-1)^(n+1)Pochhammer[n, 3]HypergeometricPFQ[{1-n, 1+n/3, (4+n)/3, (5+n)/3}, {5/4, 7/4, 2}, 3^3/2^6]/3; Join[{1}, Array[a, 30]] (* Stefano Spezia, Jul 11 2024 *)
PROG
(PARI) my(N=40, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1+x)^4))
(PARI) a(n)=sum(k=0, n, (-1)^(n-k) * binomial(2*k, k) * binomial(n+3*k-1, n-k)) \\ Winston de Greef, Mar 24 2023
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Mar 24 2023
STATUS
approved
Expansion of 1/sqrt(1 - 4*x/(1+x)^5).
+10
7
1, 2, -4, -10, 30, 72, -238, -580, 1970, 4910, -16734, -42750, 144600, 379000, -1264700, -3402480, 11160730, 30828070, -99168820, -281279030, 885931600, 2580541580, -7948885910, -23779051760, 71572652480, 219906488302, -646332447086, -2039738985238, 5850898295170
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(2*k,k) * binomial(n+4*k-1,n-k).
n*a(n) = -( (2*n-4)*a(n-1) + (11*n-14)*a(n-2) + 20*(n-3)*a(n-3) + 15*(n-4)*a(n-4) + 6*(n-5)*a(n-5) + (n-6)*a(n-6) ) for n > 5.
a(0) = 1; a(n) = (2/n) * Sum_{k=0..n-1} (-1)^(n-1-k) * (n+k) * binomial(n+3-k,4) * a(k).
a(n) = (-1)^(n+1)*Pochhammer(n,4)*hypergeom([3/2, 1-n, 1+n/4, (5+n)/4, (6+n)/4, (7+n)/4], [6/5, 7/5, 8/5, 9/5, 2], 2^10/5^5)/12 for n > 0. - Stefano Spezia, Jul 11 2024
MATHEMATICA
a[n_]:=(-1)^(n+1)Pochhammer[n, 4]HypergeometricPFQ[{3/2, 1-n, 1+n/4, (5+n)/4, (6+n)/4, (7+n)/4}, {6/5, 7/5, 8/5, 9/5, 2}, 2^10/5^5]/12; Join[{1}, Array[a, 28]] (* Stefano Spezia, Jul 11 2024 *)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(1/sqrt(1-4*x/(1+x)^5))
(PARI) a(n) = sum(k=0, n, (-1)^(n-k) * binomial(2*k, k) * binomial(n+4*k-1, n-k)) \\ Winston de Greef, Mar 24 2023
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Mar 24 2023
STATUS
approved

Search completed in 0.027 seconds