[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-00242990.html
   My bibliography  Save this paper

Stochastic Approximations and Differential Inclusions

Author

Listed:
  • Michel Benaïm

    (UNINE - Université de Neuchâtel = University of Neuchatel)

  • Josef Hofbauer

    (UCL - University College of London [London])

  • Sylvain Sorin

    (CECO - Laboratoire d'économétrie de l'École polytechnique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique)

Abstract
The dynamical systems approach to stochastic approximation is generalized to the case where the mean differential equation is replaced by a differential inclusion. The limit set theorem of Bena\"{\i}m and Hirsch is extended to this situation. Internally chain transitive sets and attractors are studied in detail for set-valued dynamical systems. Applications to game theory are given, in particular to Blackwell's approachability theorem and the convergence of fictitious play.

Suggested Citation

  • Michel Benaïm & Josef Hofbauer & Sylvain Sorin, 2003. "Stochastic Approximations and Differential Inclusions," Working Papers hal-00242990, HAL.
  • Handle: RePEc:hal:wpaper:hal-00242990
    Note: View the original document on HAL open archive server: https://hal.science/hal-00242990
    as

    Download full text from publisher

    File URL: https://hal.science/hal-00242990/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
    2. Josef Hofbauer & William H. Sandholm, 2002. "On the Global Convergence of Stochastic Fictitious Play," Econometrica, Econometric Society, vol. 70(6), pages 2265-2294, November.
    3. Benaim, Michel & Hirsch, Morris W., 1999. "Mixed Equilibria and Dynamical Systems Arising from Fictitious Play in Perturbed Games," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 36-72, October.
    4. Drew Fudenberg & David K. Levine, 1998. "The Theory of Learning in Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061945, April.
    5. Smale, Steve, 1980. "The Prisoner's Dilemma and Dynamical Systems Associated to Non-Cooperative Games," Econometrica, Econometric Society, vol. 48(7), pages 1617-1634, November.
    6. Gilboa, Itzhak & Matsui, Akihiko, 1991. "Social Stability and Equilibrium," Econometrica, Econometric Society, vol. 59(3), pages 859-867, May.
    7. Michel Benaim & Josef Hofbauer & Sylvain Sorin, 2005. "Stochastic Approximations and Differential Inclusions II: Applications," Levine's Bibliography 784828000000000098, UCLA Department of Economics.
    8. Monderer, Dov & Shapley, Lloyd S., 1996. "Fictitious Play Property for Games with Identical Interests," Journal of Economic Theory, Elsevier, vol. 68(1), pages 258-265, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Perkins, S. & Leslie, D.S., 2014. "Stochastic fictitious play with continuous action sets," Journal of Economic Theory, Elsevier, vol. 152(C), pages 179-213.
    2. Russell Golman, 2011. "Why learning doesn’t add up: equilibrium selection with a composition of learning rules," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(4), pages 719-733, November.
    3. Andriy Zapechelnyuk, 2009. "Limit Behavior of No-regret Dynamics," Discussion Papers 21, Kyiv School of Economics.
    4. Benaïm, Michel & Hofbauer, Josef & Hopkins, Ed, 2009. "Learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1694-1709, July.
    5. Cason, Timothy N. & Friedman, Daniel & Hopkins, Ed, 2010. "Testing the TASP: An experimental investigation of learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 145(6), pages 2309-2331, November.
    6. Michel Benaïm & Josef Hofbauer & Sylvain Sorin, 2005. "Stochastic Approximations and Differential Inclusions; Part II: Applications," Working Papers hal-00242974, HAL.
    7. repec:hal:wpaper:hal-00713871 is not listed on IDEAS
    8. Ziv Gorodeisky, 2008. "Stochastic Approximation of Discontinuous Dynamics," Discussion Paper Series dp496, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    9. Balkenborg, Dieter G. & Hofbauer, Josef & Kuzmics, Christoph, 2013. "Refined best-response correspondence and dynamics," Theoretical Economics, Econometric Society, vol. 8(1), January.
    10. Balkenborg, Dieter & Hofbauer, Josef & Kuzmics, Christoph, 2016. "Refined best reply correspondence and dynamics," Center for Mathematical Economics Working Papers 451, Center for Mathematical Economics, Bielefeld University.
    11. Josef Hofbauer & Sylvain Sorin & Yannick Viossat, 2009. "Time Average Replicator and Best Reply Dynamics," Post-Print hal-00360767, HAL.
    12. Michel Benaim & Olivier Raimond, 2007. "Simulated Annealing, Vertex-Reinforced Random Walks and Learning in Games," Levine's Bibliography 122247000000001702, UCLA Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benaïm, Michel & Hofbauer, Josef & Hopkins, Ed, 2009. "Learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 144(4), pages 1694-1709, July.
    2. Leslie, David S. & Collins, E.J., 2006. "Generalised weakened fictitious play," Games and Economic Behavior, Elsevier, vol. 56(2), pages 285-298, August.
    3. Hofbauer, Josef & Hopkins, Ed, 2005. "Learning in perturbed asymmetric games," Games and Economic Behavior, Elsevier, vol. 52(1), pages 133-152, July.
    4. Ulrich Berger, 2004. "Two More Classes of Games with the Fictitious Play Property," Game Theory and Information 0408003, University Library of Munich, Germany.
    5. Cason, Timothy N. & Friedman, Daniel & Hopkins, Ed, 2010. "Testing the TASP: An experimental investigation of learning in games with unstable equilibria," Journal of Economic Theory, Elsevier, vol. 145(6), pages 2309-2331, November.
    6. Lahkar, Ratul & Mukherjee, Sayan & Roy, Souvik, 2022. "Generalized perturbed best response dynamics with a continuum of strategies," Journal of Economic Theory, Elsevier, vol. 200(C).
    7. Ewerhart, Christian & Valkanova, Kremena, 2020. "Fictitious play in networks," Games and Economic Behavior, Elsevier, vol. 123(C), pages 182-206.
    8. Saeed Hadikhanloo & Rida Laraki & Panayotis Mertikopoulos & Sylvain Sorin, 2022. "Learning in nonatomic games, part Ⅰ: Finite action spaces and population games," Post-Print hal-03767995, HAL.
    9. Michel Benaïm & Josef Hofbauer & Sylvain Sorin, 2006. "Stochastic Approximations and Differential Inclusions, Part II: Applications," Mathematics of Operations Research, INFORMS, vol. 31(4), pages 673-695, November.
    10. Swenson, Brian & Murray, Ryan & Kar, Soummya, 2020. "Regular potential games," Games and Economic Behavior, Elsevier, vol. 124(C), pages 432-453.
    11. Hofbauer,J. & Sandholm,W.H., 2001. "Evolution and learning in games with randomly disturbed payoffs," Working papers 5, Wisconsin Madison - Social Systems.
    12. Ratul, Lahkar, 2011. "The dynamic instability of dispersed price equilibria," Journal of Economic Theory, Elsevier, vol. 146(5), pages 1796-1827, September.
    13. Michel Benaïm & Mathieu Faure, 2013. "Consistency of Vanishingly Smooth Fictitious Play," Mathematics of Operations Research, INFORMS, vol. 38(3), pages 437-450, August.
    14. Michel Benaim & Olivier Raimond, 2007. "Simulated Annealing, Vertex-Reinforced Random Walks and Learning in Games," Levine's Bibliography 122247000000001702, UCLA Department of Economics.
    15. Mario Bravo & Mathieu Faure, 2013. "Reinforcement Learning with Restrictions on the Action Set," AMSE Working Papers 1335, Aix-Marseille School of Economics, France, revised 01 Jul 2013.
    16. RatulLahkar & Sayan Mukherjee & Souvik Roy, 2021. "Generalized Perturbed Best Response Dynamics with a Continuum of Strategies," Working Papers 51, Ashoka University, Department of Economics.
    17. Candogan, Ozan & Ozdaglar, Asuman & Parrilo, Pablo A., 2013. "Dynamics in near-potential games," Games and Economic Behavior, Elsevier, vol. 82(C), pages 66-90.
    18. Michel Benaïm & Josef Hofbauer & Sylvain Sorin, 2012. "Perturbations of Set-Valued Dynamical Systems, with Applications to Game Theory," Dynamic Games and Applications, Springer, vol. 2(2), pages 195-205, June.
    19. Cominetti, Roberto & Melo, Emerson & Sorin, Sylvain, 2010. "A payoff-based learning procedure and its application to traffic games," Games and Economic Behavior, Elsevier, vol. 70(1), pages 71-83, September.
    20. Panayotis Mertikopoulos & William H. Sandholm, 2016. "Learning in Games via Reinforcement and Regularization," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1297-1324, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-00242990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.