[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/bie/wpaper/451.html
   My bibliography  Save this paper

Refined best reply correspondence and dynamics

Author

Listed:
  • Balkenborg, Dieter

    (Center for Mathematical Economics, Bielefeld University)

  • Hofbauer, Josef

    (Center for Mathematical Economics, Bielefeld University)

  • Kuzmics, Christoph

    (Center for Mathematical Economics, Bielefeld University)

Abstract
We call a correspondence, defined on the set of mixed strategy profiles, a generalized best reply correspondence if it has a product structure, is upper hemi-continuous, always includes a best reply to any mixed strategy profile, and is convex- and closed-valued. For each generalized best reply correspondence we define a generalized best reply dynamics as a differential inclusion based on it. We call a face of the set of mixed strategy profiles a minimally asymptotically stable face (MASF) if it is asymptotically stable under some such dynamics and no subface of it is asymptotically stable under any such dynamics. The set of such correspondences (and dynamics) is endowed with the partial order of point-wise set-inclusion and, under a mild condition on the normal form of the game at hand, forms a complete lattice with meets based on point-wise intersections. The refined best reply correspondence is then defined as the smallest element of the set of all generalized best reply correspondences. We ultimately find that every Kalai and Samet's (1984) persistent retract, which coincide with Basu and Weibull's (1991) CURB sets based, however, on the refined best reply correspondence, contains a MASF. Conversely, every MASF must be a Voorneveld's (2004) prep set, again, however, based on the refined best reply correspondence.

Suggested Citation

  • Balkenborg, Dieter & Hofbauer, Josef & Kuzmics, Christoph, 2016. "Refined best reply correspondence and dynamics," Center for Mathematical Economics Working Papers 451, Center for Mathematical Economics, Bielefeld University.
  • Handle: RePEc:bie:wpaper:451
    as

    Download full text from publisher

    File URL: https://pub.uni-bielefeld.de/download/2900952/2900953
    File Function: First Version, 2011
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. van Damme, Eric & Hurkens, Sjaak, 1996. "Commitment Robust Equilibria and Endogenous Timing," Games and Economic Behavior, Elsevier, vol. 15(2), pages 290-311, August.
    2. Ritzberger, Klaus & Weibull, Jorgen W, 1995. "Evolutionary Selection in Normal-Form Games," Econometrica, Econometric Society, vol. 63(6), pages 1371-1399, November.
    3. Dieter Balkenborg & Josef Hofbauer & Christoph Kuzmics, 2015. "The refined best-response correspondence in normal form games," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(1), pages 165-193, February.
    4. Young, H Peyton, 1993. "The Evolution of Conventions," Econometrica, Econometric Society, vol. 61(1), pages 57-84, January.
    5. Voorneveld, Mark, 2004. "Preparation," Games and Economic Behavior, Elsevier, vol. 48(2), pages 403-414, August.
    6. Balkenborg, Dieter & Jansen, Mathijs & Vermeulen, Dries, 2001. "Invariance properties of persistent equilibria and related solution concepts," Mathematical Social Sciences, Elsevier, vol. 41(1), pages 111-130, January.
    7. Basu, Kaushik & Weibull, Jorgen W., 1991. "Strategy subsets closed under rational behavior," Economics Letters, Elsevier, vol. 36(2), pages 141-146, June.
    8. Dekel, Eddie & Fudenberg, Drew, 1990. "Rational behavior with payoff uncertainty," Journal of Economic Theory, Elsevier, vol. 52(2), pages 243-267, December.
    9. Bernheim, B Douglas, 1984. "Rationalizable Strategic Behavior," Econometrica, Econometric Society, vol. 52(4), pages 1007-1028, July.
    10. Ehud Kalai & Dov Samet, 1982. "Persistent Equilibria in Strategic Games," Discussion Papers 515, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    11. Kohlberg, Elon & Mertens, Jean-Francois, 1986. "On the Strategic Stability of Equilibria," Econometrica, Econometric Society, vol. 54(5), pages 1003-1037, September.
    12. Ritzberger, Klaus, 2002. "Foundations of Non-Cooperative Game Theory," OUP Catalogue, Oxford University Press, number 9780199247868.
    13. Kets, Willemien & Voorneveld, Mark, 2005. "Learning to be prepared," SSE/EFI Working Paper Series in Economics and Finance 590, Stockholm School of Economics.
    14. Gilboa, Itzhak & Matsui, Akihiko, 1991. "Social Stability and Equilibrium," Econometrica, Econometric Society, vol. 59(3), pages 859-867, May.
    15. Blume Andreas, 1994. "Equilibrium Refinements in Sender-Receiver Games," Journal of Economic Theory, Elsevier, vol. 64(1), pages 66-77, October.
    16. Samuelson, Larry, 1992. "Dominated strategies and common knowledge," Games and Economic Behavior, Elsevier, vol. 4(2), pages 284-313, April.
    17. Hurkens Sjaak, 1995. "Learning by Forgetful Players," Games and Economic Behavior, Elsevier, vol. 11(2), pages 304-329, November.
    18. Balkenborg, Dieter & Jansen, Mathijs & Vermeulen, Dries, 2001. "Invariance properties of persistent equilibria and related solution concepts," Mathematical Social Sciences, Elsevier, vol. 41(1), pages 111-130, January.
    19. Jorgen W. Weibull, 1997. "Evolutionary Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262731215, April.
    20. Ross Cressman, 2003. "Evolutionary Dynamics and Extensive Form Games," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262033054, April.
    21. Sergiu Hart & Andreu Mas-Colell, 2013. "Uncoupled Dynamics Do Not Lead To Nash Equilibrium," World Scientific Book Chapters, in: Simple Adaptive Strategies From Regret-Matching to Uncoupled Dynamics, chapter 7, pages 153-163, World Scientific Publishing Co. Pte. Ltd..
    22. Pearce, David G, 1984. "Rationalizable Strategic Behavior and the Problem of Perfection," Econometrica, Econometric Society, vol. 52(4), pages 1029-1050, July.
    23. Michel Benaïm & Josef Hofbauer & Sylvain Sorin, 2003. "Stochastic Approximations and Differential Inclusions," Working Papers hal-00242990, HAL.
    24. Balkenborg, Dieter & Schlag, Karl H., 2007. "On the evolutionary selection of sets of Nash equilibria," Journal of Economic Theory, Elsevier, vol. 133(1), pages 295-315, March.
    25. Matsui, Akihiko, 1992. "Best response dynamics and socially stable strategies," Journal of Economic Theory, Elsevier, vol. 57(2), pages 343-362, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yannick Viossat, 2015. "Evolutionary dynamics and dominated strategies," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 3(1), pages 91-113, April.
    2. Christoph Kuzmics & Daniel Rodenburger, 2020. "A case of evolutionarily stable attainable equilibrium in the laboratory," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 70(3), pages 685-721, October.
    3. P. Jean-Jacques Herings & Andrey Meshalkin & Arkadi Predtetchinski, 2020. "Optimality, Equilibrium, and Curb Sets in Decision Problems Without Commitment," Dynamic Games and Applications, Springer, vol. 10(2), pages 478-492, June.
    4. Hanaki, Nobuyuki & Tanimura, Emily & Vriend, Nicolaas J., 2019. "The Principle of Minimum Differentiation revisited: Return of the median voter," Journal of Economic Behavior & Organization, Elsevier, vol. 157(C), pages 145-170.
    5. Herold, Florian & Kuzmics, Christoph, 2020. "The evolution of taking roles," Journal of Economic Behavior & Organization, Elsevier, vol. 174(C), pages 38-63.
    6. repec:hal:wpaper:hal-00713871 is not listed on IDEAS
    7. Hans Carlsson & Philipp Christoph Wichardt, 2019. "Strict Incentives and Strategic Uncertainty," CESifo Working Paper Series 7715, CESifo.
    8. Jonathan Newton, 2018. "Evolutionary Game Theory: A Renaissance," Games, MDPI, vol. 9(2), pages 1-67, May.
    9. Christopher Kah & Markus Walzl, 2015. "Stochastic Stability in a Learning Dynamic with Best Response to Noisy Play," Working Papers 2015-15, Faculty of Economics and Statistics, Universität Innsbruck.
    10. repec:grz:wpaper:2016-11 is not listed on IDEAS
    11. Christoph Kuzmics & Daniel Rodenburger, 2018. "A case of evolutionary stable attainable equilibrium in the lab," Graz Economics Papers 2018-05, University of Graz, Department of Economics.
    12. Laraki, Rida & Mertikopoulos, Panayotis, 2013. "Higher order game dynamics," Journal of Economic Theory, Elsevier, vol. 148(6), pages 2666-2695.
    13. Hanaki, Nobuyuki & Tanimura, Emily & Vriend, Nicolaas J., 2019. "The Principle of Minimum Differentiation revisited: Return of the median voter," Journal of Economic Behavior & Organization, Elsevier, vol. 157(C), pages 145-170.
    14. Francesco Caruso & Maria Carmela Ceparano & Jacqueline Morgan, 2020. "Best response algorithms in ratio-bounded games: convergence of affine relaxations to Nash equilibria," CSEF Working Papers 593, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balkenborg, Dieter G. & Hofbauer, Josef & Kuzmics, Christoph, 2013. "Refined best-response correspondence and dynamics," Theoretical Economics, Econometric Society, vol. 8(1), January.
    2. Dieter Balkenborg & Josef Hofbauer & Christoph Kuzmics, 2015. "The refined best-response correspondence in normal form games," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(1), pages 165-193, February.
    3. Weibull, Jörgen W., 1997. "What have we learned from Evolutionary Game Theory so far?," Working Paper Series 487, Research Institute of Industrial Economics, revised 26 Oct 1998.
    4. Christoph Kuzmics & Daniel Rodenburger, 2020. "A case of evolutionarily stable attainable equilibrium in the laboratory," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 70(3), pages 685-721, October.
    5. Peter Wikman, 2022. "Nash blocks," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(1), pages 29-51, March.
    6. Geir B. Asheim & Mark Voorneveld & Jörgen Weibull, 2009. "Epistemically stable strategy sets," Working Papers hal-00440098, HAL.
    7. Rene Saran & Roberto Serrano, 2012. "Regret Matching with Finite Memory," Dynamic Games and Applications, Springer, vol. 2(1), pages 160-175, March.
    8. Blume, Andreas, 1998. "Communication, Risk, and Efficiency in Games," Games and Economic Behavior, Elsevier, vol. 22(2), pages 171-202, February.
    9. Jonathan Newton, 2018. "Evolutionary Game Theory: A Renaissance," Games, MDPI, vol. 9(2), pages 1-67, May.
    10. Geir B. Asheim & Mark Voorneveld & Jörgen W. Weibull, 2016. "Epistemically Robust Strategy Subsets," Games, MDPI, vol. 7(4), pages 1-16, November.
    11. Andriy Zapechelnyuk, 2009. "Limit Behavior of No-regret Dynamics," Discussion Papers 21, Kyiv School of Economics.
    12. Dekel, Eddie & Siniscalchi, Marciano, 2015. "Epistemic Game Theory," Handbook of Game Theory with Economic Applications,, Elsevier.
    13. Sandholm, William H., 2015. "Population Games and Deterministic Evolutionary Dynamics," Handbook of Game Theory with Economic Applications,, Elsevier.
    14. Xu, Zibo, 2013. "Stochastic stability in finite extensive-form games of perfect information," SSE/EFI Working Paper Series in Economics and Finance 743, Stockholm School of Economics.
    15. Balkenborg, Dieter, 2018. "Rationalizability and logical inference," Games and Economic Behavior, Elsevier, vol. 110(C), pages 248-257.
    16. Christopher Kah & Markus Walzl, 2015. "Stochastic Stability in a Learning Dynamic with Best Response to Noisy Play," Working Papers 2015-15, Faculty of Economics and Statistics, Universität Innsbruck.
    17. Asheim, G.B. & Dufwenberg, M., 1996. "Admissibility and Common Knowledge," Discussion Paper 1996-16, Tilburg University, Center for Economic Research.
    18. Gilles Grandjean & Ana Mauleon & Vincent Vannetelbosch, 2017. "Strongly rational sets for normal-form games," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 5(1), pages 35-46, April.
    19. Asheim, Geir B. & Dufwenberg, Martin, 2003. "Admissibility and common belief," Games and Economic Behavior, Elsevier, vol. 42(2), pages 208-234, February.
    20. Heifetz, Aviad & Meier, Martin & Schipper, Burkhard C., 2019. "Comprehensive rationalizability," Games and Economic Behavior, Elsevier, vol. 116(C), pages 185-202.

    More about this item

    Keywords

    Evolutionary game theory; best response dynamics; CURB sets; persistent retracts; asymptotic stability; Nash equilibrium refinements; learning;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bie:wpaper:451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bettina Weingarten (email available below). General contact details of provider: https://edirc.repec.org/data/imbiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.