[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/jae/japmet/v22y2007i4p795-816.html
   My bibliography  Save this article

Nonparametric estimation of concave production technologies by entropic methods

Author

Listed:
  • Gad Allon

    (Kellogg School of Management, Northwestern University, USA)

  • Michael Beenstock

    (Department of Economics, Hebrew University of Jerusalem, Jerusalem, Israel)

  • Steven Hackman

    (School of Industrial and Systems Engineering, Georgia Institute of Technology Atlanta, GA USA)

  • Ury Passy

    (Faculty of Industrial Engineering and Management Technion-Israel Institute of Technology, Haifa, Israel)

  • Alexander Shapiro

    (School of Industrial and Systems Engineering, Georgia Institute of Technology Atlanta, GA USA)

Abstract
An econometric methodology is developed for nonparametric estimation of concave production technologies. The methodology, based on the principle of maximum likelihood, uses entropic distance and convex programming techniques to estimate production functions. Empirical applications are presented to demonstrate the feasibility of the methodology in small and large datasets. Copyright © 2007 John Wiley & Sons, Ltd.

Suggested Citation

  • Gad Allon & Michael Beenstock & Steven Hackman & Ury Passy & Alexander Shapiro, 2007. "Nonparametric estimation of concave production technologies by entropic methods," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(4), pages 795-816.
  • Handle: RePEc:jae:japmet:v:22:y:2007:i:4:p:795-816
    DOI: 10.1002/jae.918
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/jae.918
    File Function: Link to full text; subscription required
    Download Restriction: no

    File URL: http://qed.econ.queensu.ca:80/jae/2007-v22.4/
    File Function: Supporting data files and programs
    Download Restriction: no

    File URL: https://libkey.io/10.1002/jae.918?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Adonis Yatchew & Len Bos, 1997. "Nonparametric Least Squares Regression and Testing in Economic Models," Working Papers yatchew-99-01, University of Toronto, Department of Economics.
    2. Varian, Hal R, 1982. "The Nonparametric Approach to Demand Analysis," Econometrica, Econometric Society, vol. 50(4), pages 945-973, July.
    3. Matzkin, Rosa L., 1986. "Restrictions of economic theory in nonparametric methods," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 42, pages 2523-2558, Elsevier.
    4. Manski, Charles F., 1992. "Identification Problems In The Social Sciences," SSRI Workshop Series 292716, University of Wisconsin-Madison, Social Systems Research Institute.
    5. Arnold Zellner & Hang Ryu, 1998. "Alternative functional forms for production, cost and returns to scale functions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(2), pages 101-127.
    6. Matzkin, Rosa L, 1991. "Semiparametric Estimation of Monotone and Concave Utility Functions for Polychotomous Choice Models," Econometrica, Econometric Society, vol. 59(5), pages 1315-1327, September.
    7. Christensen, Laurits R & Jorgenson, Dale W & Lau, Lawrence J, 1973. "Transcendental Logarithmic Production Frontiers," The Review of Economics and Statistics, MIT Press, vol. 55(1), pages 28-45, February.
    8. Afriat, Sidney N, 1972. "Efficiency Estimation of Production Function," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 13(3), pages 568-598, October.
    9. Newey, Whitney K. & McFadden, Daniel, 1986. "Large sample estimation and hypothesis testing," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 36, pages 2111-2245, Elsevier.
    10. Matzkin, Rosa L., 1993. "Nonparametric identification and estimation of polychotomous choice models," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 137-168, July.
    11. Afriat, S N, 1971. "The Output Limit Function in General and Convex Programming and the Theory of Production," Econometrica, Econometric Society, vol. 39(2), pages 309-339, March.
    12. Hanoch, Giora & Rothschild, Michael, 1972. "Testing the Assumptions of Production Theory: A Nonparametric Approach," Journal of Political Economy, University of Chicago Press, vol. 80(2), pages 256-275, March-Apr.
    13. Donald W. K. Andrews & Moshe Buchinsky, 2000. "A Three-Step Method for Choosing the Number of Bootstrap Repetitions," Econometrica, Econometric Society, vol. 68(1), pages 23-52, January.
    14. Varian, Hal R, 1984. "The Nonparametric Approach to Production Analysis," Econometrica, Econometric Society, vol. 52(3), pages 579-597, May.
    15. Michael Beenstock, 1997. "Business Sector Production in the Short and Long Run in Israel," Journal of Productivity Analysis, Springer, vol. 8(1), pages 53-69, March.
    16. Varian, Hal R., 1985. "Non-parametric analysis of optimizing behavior with measurement error," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 445-458.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel J. Henderson, 2009. "A Non‐parametric Examination of Capital–Skill Complementarity," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(4), pages 519-538, August.
    2. Chumpitaz, Ruben & Kerstens, Kristiaan & Paparoidamis, Nicholas & Staat, Matthias, 2010. "Comparing efficiency across markets: An extension and critique of the methodology," European Journal of Operational Research, Elsevier, vol. 205(3), pages 719-728, September.
    3. Aubin-Frankowski, Pierre-Cyril & Szabo, Zoltan, 2022. "Handling hard affine SDP shape constraints in RKHSs," LSE Research Online Documents on Economics 115724, London School of Economics and Political Science, LSE Library.
    4. Eunji Lim & Peter W. Glynn, 2012. "Consistency of Multidimensional Convex Regression," Operations Research, INFORMS, vol. 60(1), pages 196-208, February.
    5. Nanjing Jian & Shane G. Henderson, 2020. "Estimating the Probability that a Function Observed with Noise Is Convex," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 376-389, April.
    6. Tsionas, Mike G., 2023. "Performance estimation when the distribution of inefficiency is unknown," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1212-1222.
    7. Tsionas, Mike G. & Izzeldin, Marwan, 2018. "Smooth approximations to monotone concave functions in production analysis: An alternative to nonparametric concave least squares," European Journal of Operational Research, Elsevier, vol. 271(3), pages 797-807.
    8. Tsionas, Mike G., 2021. "Optimal combinations of stochastic frontier and data envelopment analysis models," European Journal of Operational Research, Elsevier, vol. 294(2), pages 790-800.
    9. Preciado Arreola, José Luis & Johnson, Andrew L. & Chen, Xun C. & Morita, Hiroshi, 2020. "Estimating stochastic production frontiers: A one-stage multivariate semiparametric Bayesian concave regression method," European Journal of Operational Research, Elsevier, vol. 287(2), pages 699-711.
    10. Dimitris Bertsimas & Nishanth Mundru, 2021. "Sparse Convex Regression," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 262-279, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aguiar, Victor H. & Kashaev, Nail & Allen, Roy, 2023. "Prices, profits, proxies, and production," Journal of Econometrics, Elsevier, vol. 235(2), pages 666-693.
    2. Mike G. Tsionas & Valentin Zelenyuk, 2022. "Testing for Optimization Behavior in Production when Data is with Measurement Errors: A Bayesian Approach," CEPA Working Papers Series WP012022, School of Economics, University of Queensland, Australia.
    3. Cherchye, L. & Post, G.T., 2001. "Methodological Advances in Dea," ERIM Report Series Research in Management ERS-2001-53-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    4. Ait-Sahalia, Yacine & Duarte, Jefferson, 2003. "Nonparametric option pricing under shape restrictions," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 9-47.
    5. H. Spencer Banzhaf & Yaqin Liu & Martin Smith & Frank Asche, 2019. "Non-Parametric Tests of the Tragedy of the Commons," NBER Working Papers 26398, National Bureau of Economic Research, Inc.
    6. Kuosmanen, Timo & Post, Thierry & Scholtes, Stefan, 2007. "Non-parametric tests of productive efficiency with errors-in-variables," Journal of Econometrics, Elsevier, vol. 136(1), pages 131-162, January.
    7. Leleu, Hervé, 2013. "Inner and outer approximations of technology: A shadow profit approach," Omega, Elsevier, vol. 41(5), pages 868-871.
    8. Jacho-Chávez, David & Lewbel, Arthur & Linton, Oliver, 2010. "Identification and nonparametric estimation of a transformed additively separable model," Journal of Econometrics, Elsevier, vol. 156(2), pages 392-407, June.
    9. Daniel J. Henderson & Christopher F. Parmeter, 2009. "Imposing economic constraints in nonparametric regression: survey, implementation, and extension," Advances in Econometrics, in: Nonparametric Econometric Methods, pages 433-469, Emerald Group Publishing Limited.
    10. Ian Crawford & Bram De Rock, 2014. "Empirical Revealed Preference," Annual Review of Economics, Annual Reviews, vol. 6(1), pages 503-524, August.
    11. Tsur, Yacov, 1990. "Testing The Significance Of Deviations From Rational Behavior," Staff Papers 13267, University of Minnesota, Department of Applied Economics.
    12. Laurens Cherchye & Thomas Demuynck & Bram De Rock & Marijn Verschelde, 2018. "Nonparametric identification of unobserved technological heterogeneity in production," Working Paper Research 335, National Bank of Belgium.
    13. Laurens Cherchye & Bram De Rock, 2024. "Nonparametric Analysis of Separable Production Technologies with Intermediate Inputs," Working Papers ECARES 2024-13, ULB -- Universite Libre de Bruxelles.
    14. Laurens Cherchye & Thomas Demuynck & Bram De Rock & Marijn Verschelde, 2018. "Nonparametric Production Analysis with Unobserved Heterogeneity in Productivity," Working Papers ECARES 2018-25, ULB -- Universite Libre de Bruxelles.
    15. Jim Engle-Warnick & Natalia Mishagina, 2014. "Insensitivity to Prices in a Dictator Game," CIRANO Working Papers 2014s-19, CIRANO.
    16. James Andreoni & William Harbaugh, 2005. "Power Indicies for Revealed Preference Tests," Levine's Bibliography 784828000000000181, UCLA Department of Economics.
    17. Mike Tsionas & Valentin Zelenyuk, 2021. "Goodness-of-fit in Optimizing Models of Production: A Generalization with a Bayesian Perspective," CEPA Working Papers Series WP182021, School of Economics, University of Queensland, Australia.
    18. Featherstone, Allen M. & Moghnieh, Ghassan A. & Goodwin, Barry K., 1995. "Farm-level nonparametric analysis of cost-minimization and profit-maximization behavior," Agricultural Economics, Blackwell, vol. 13(2), pages 109-117, November.
    19. Fare, Rolf & Grosskopf, Shawna, 1995. "Nonparametric tests of regularity, Farrell efficiency, and goodness-of-fit," Journal of Econometrics, Elsevier, vol. 69(2), pages 415-425, October.
    20. Cherchye, Laurens & Kuosmanen, Timo & Post, Thierry, 2002. "Non-parametric production analysis in non-competitive environments," International Journal of Production Economics, Elsevier, vol. 80(3), pages 279-294, December.

    More about this item

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jae:japmet:v:22:y:2007:i:4:p:795-816. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0883-7252/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.