[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/h/eee/ecochp/4-36.html
   My bibliography  Save this book chapter

Large sample estimation and hypothesis testing

In: Handbook of Econometrics

Author

Listed:
  • Newey, Whitney K.
  • McFadden, Daniel
Abstract
Asymptotic distribution theory is the primary method used to examine the properties of econometric estimators and tests. We present conditions for obtaining cosistency and asymptotic normality of a very general class of estimators (extremum estimators). Consistent asymptotic variance estimators are given to enable approximation of the asymptotic distribution. Asymptotic efficiency is another desirable property then considered. Throughout the chapter, the general results are also specialized to common econometric estimators (e.g. MLE and GMM), and in specific examples we work through the conditions for the various results in detail. The results are also extended to two-step estimators (with finite-dimensional parameter estimation in the first step), estimators derived from nonsmooth objective functions, and semiparametric two-step estimators (with nonparametric estimation of an infinite-dimensional parameter in the first step). Finally, the trinity of test statistics is considered within the quite general setting of GMM estimation, and numerous examples are given.

Suggested Citation

  • Newey, Whitney K. & McFadden, Daniel, 1986. "Large sample estimation and hypothesis testing," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 36, pages 2111-2245, Elsevier.
  • Handle: RePEc:eee:ecochp:4-36
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/B7GX7-4FPWV09-5/2/bfb52a25794cfddfbd9c845eb4174cf5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    JEL classification:

    • C39 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecochp:4-36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/bookseriesdescription.cws_home/BS_HE/description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.