[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/qld/uqcepa/173.html
   My bibliography  Save this paper

Testing for Optimization Behavior in Production when Data is with Measurement Errors: A Bayesian Approach

Author

Listed:
Abstract
The purpose of this paper is to develop formal tests for cost / profitt rationalization of observed data sets under measurement errors in both prices and quantities. The new techniques are based on new statistical formulations for inequalities that describe cost and pro t rationalizability, developed in a Bayesian framework. The new likelihood-based methods of inference are introduced and then illustrated using a data set of large U.S. banks. We also develop various robustness checks, including a normal and lognormal speci cation of the data generating process, as well as a multivariate mixture-of-normal-distributions.

Suggested Citation

  • Mike G. Tsionas & Valentin Zelenyuk, 2022. "Testing for Optimization Behavior in Production when Data is with Measurement Errors: A Bayesian Approach," CEPA Working Papers Series WP012022, School of Economics, University of Queensland, Australia.
  • Handle: RePEc:qld:uqcepa:173
    as

    Download full text from publisher

    File URL: https://economics.uq.edu.au/files/33923/WP012022.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Varian, Hal R, 1982. "The Nonparametric Approach to Demand Analysis," Econometrica, Econometric Society, vol. 50(4), pages 945-973, July.
    2. Keshvari, Abolfazl & Kuosmanen, Timo, 2013. "Stochastic non-convex envelopment of data: Applying isotonic regression to frontier estimation," European Journal of Operational Research, Elsevier, vol. 231(2), pages 481-491.
    3. Chavas, Jean-Paul & Cox, Thomas L, 1990. "A Non-parametric Analysis of Productivity: The Case of U.S. and Japanese Manufacturing," American Economic Review, American Economic Association, vol. 80(3), pages 450-464, June.
    4. Afriat, Sidney N, 1972. "Efficiency Estimation of Production Function," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 13(3), pages 568-598, October.
    5. Federico Echenique & Sangmok Lee & Matthew Shum, 2011. "The Money Pump as a Measure of Revealed Preference Violations," Journal of Political Economy, University of Chicago Press, vol. 119(6), pages 1201-1223.
    6. Varian, Hal R., 1983. "Nonparametric Tests of Models of Investor Behavior," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 18(3), pages 269-278, September.
    7. Daisuke Yagi & Yining Chen & Andrew L. Johnson & Timo Kuosmanen, 2020. "Shape-Constrained Kernel-Weighted Least Squares: Estimating Production Functions for Chilean Manufacturing Industries," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(1), pages 43-54, January.
    8. Geweke, John & Keane, Michael, 2007. "Smoothly mixing regressions," Journal of Econometrics, Elsevier, vol. 138(1), pages 252-290, May.
    9. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    10. Timo Kuosmanen, 2008. "Representation theorem for convex nonparametric least squares," Econometrics Journal, Royal Economic Society, vol. 11(2), pages 308-325, July.
    11. Fleissig, Adrian R & Whitney, Gerald A, 2003. "A New PC-Based Test for Varian's Weak Separability Conditions," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(1), pages 133-144, January.
    12. Hal R. Varian, 1983. "Non-parametric Tests of Consumer Behaviour," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 50(1), pages 99-110.
    13. Varian, Hal R., 1982. "Non-parametric methods in demand analysis," Economics Letters, Elsevier, vol. 9(1), pages 23-29.
    14. Christopher F. Parmeter & Valentin Zelenyuk, 2019. "Combining the Virtues of Stochastic Frontier and Data Envelopment Analysis," Operations Research, INFORMS, vol. 67(6), pages 1628-1658, November.
    15. Hanoch, Giora & Rothschild, Michael, 1972. "Testing the Assumptions of Production Theory: A Nonparametric Approach," Journal of Political Economy, University of Chicago Press, vol. 80(2), pages 256-275, March-Apr.
    16. Smeulders, Bart & Crama, Yves & Spieksma, Frits C.R., 2019. "Revealed preference theory: An algorithmic outlook," European Journal of Operational Research, Elsevier, vol. 272(3), pages 803-815.
    17. Varian, Hal R, 1984. "The Nonparametric Approach to Production Analysis," Econometrica, Econometric Society, vol. 52(3), pages 579-597, May.
    18. Cornwell, Christopher & Schmidt, Peter & Sickles, Robin C., 1990. "Production frontiers with cross-sectional and time-series variation in efficiency levels," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 185-200.
    19. Fare, Rolf & Grosskopf, Shawna, 1995. "Nonparametric tests of regularity, Farrell efficiency, and goodness-of-fit," Journal of Econometrics, Elsevier, vol. 69(2), pages 415-425, October.
    20. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    21. Timo Kuosmanen & Mika Kortelainen, 2012. "Stochastic non-smooth envelopment of data: semi-parametric frontier estimation subject to shape constraints," Journal of Productivity Analysis, Springer, vol. 38(1), pages 11-28, August.
    22. Varian, Hal R., 1985. "Non-parametric analysis of optimizing behavior with measurement error," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 445-458.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mike Tsionas & Valentin Zelenyuk, 2021. "Goodness-of-fit in Optimizing Models of Production: A Generalization with a Bayesian Perspective," CEPA Working Papers Series WP182021, School of Economics, University of Queensland, Australia.
    2. Ian Crawford & Bram De Rock, 2014. "Empirical Revealed Preference," Annual Review of Economics, Annual Reviews, vol. 6(1), pages 503-524, August.
    3. Kuosmanen, Timo & Johnson, Andrew, 2017. "Modeling joint production of multiple outputs in StoNED: Directional distance function approach," European Journal of Operational Research, Elsevier, vol. 262(2), pages 792-801.
    4. Thomas Demuynck & John Rehbeck, 2023. "Computing revealed preference goodness-of-fit measures with integer programming," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 76(4), pages 1175-1195, November.
    5. Jim Engle-Warnick & Natalia Mishagina, 2014. "Insensitivity to Prices in a Dictator Game," CIRANO Working Papers 2014s-19, CIRANO.
    6. Timo Kuosmanen & Mogens Fosgerau, 2009. "Neoclassical versus Frontier Production Models? Testing for the Skewness of Regression Residuals," Scandinavian Journal of Economics, Wiley Blackwell, vol. 111(2), pages 351-367, June.
    7. Tsionas, Mike G. & Izzeldin, Marwan, 2018. "Smooth approximations to monotone concave functions in production analysis: An alternative to nonparametric concave least squares," European Journal of Operational Research, Elsevier, vol. 271(3), pages 797-807.
    8. Cherchye, Laurens & Demuynck, Thomas & De Rock, Bram & Hjertstrand, Per, 2015. "Revealed preference tests for weak separability: An integer programming approach," Journal of Econometrics, Elsevier, vol. 186(1), pages 129-141.
    9. Kuosmanen, Timo & Post, Thierry & Scholtes, Stefan, 2007. "Non-parametric tests of productive efficiency with errors-in-variables," Journal of Econometrics, Elsevier, vol. 136(1), pages 131-162, January.
    10. Lee, Chia-Yen & Wang, Ke, 2019. "Nash marginal abatement cost estimation of air pollutant emissions using the stochastic semi-nonparametric frontier," European Journal of Operational Research, Elsevier, vol. 273(1), pages 390-400.
    11. Tsur, Yacov, 1990. "Testing The Significance Of Deviations From Rational Behavior," Staff Papers 13267, University of Minnesota, Department of Applied Economics.
    12. Laurens Cherchye & Bram De Rock, 2024. "Nonparametric Analysis of Separable Production Technologies with Intermediate Inputs," Working Papers ECARES 2024-13, ULB -- Universite Libre de Bruxelles.
    13. Gad Allon & Michael Beenstock & Steven Hackman & Ury Passy & Alexander Shapiro, 2007. "Nonparametric estimation of concave production technologies by entropic methods," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(4), pages 795-816.
    14. Layer, Kevin & Johnson, Andrew L. & Sickles, Robin C. & Ferrier, Gary D., 2020. "Direction selection in stochastic directional distance functions," European Journal of Operational Research, Elsevier, vol. 280(1), pages 351-364.
    15. Keshvari, Abolfazl, 2017. "A penalized method for multivariate concave least squares with application to productivity analysis," European Journal of Operational Research, Elsevier, vol. 257(3), pages 1016-1029.
    16. Lee, Chia-Yen & Johnson, Andrew L. & Moreno-Centeno, Erick & Kuosmanen, Timo, 2013. "A more efficient algorithm for Convex Nonparametric Least Squares," European Journal of Operational Research, Elsevier, vol. 227(2), pages 391-400.
    17. Smeulders, Bart & Crama, Yves & Spieksma, Frits C.R., 2019. "Revealed preference theory: An algorithmic outlook," European Journal of Operational Research, Elsevier, vol. 272(3), pages 803-815.
    18. Fare, Rolf & Grosskopf, Shawna, 1995. "Nonparametric tests of regularity, Farrell efficiency, and goodness-of-fit," Journal of Econometrics, Elsevier, vol. 69(2), pages 415-425, October.
    19. Olesen, O.B. & Ruggiero, J., 2018. "An improved Afriat–Diewert–Parkan nonparametric production function estimator," European Journal of Operational Research, Elsevier, vol. 264(3), pages 1172-1188.
    20. Yacob Abrehe Zereyesus & Allen M. Featherstone & Michael R. Langemeier, 2021. "Are Kansas farms profit maximizers? A stochastic additive error approach," Agricultural Economics, International Association of Agricultural Economists, vol. 52(1), pages 37-50, January.

    More about this item

    Keywords

    Cost Minimization; Profit Maximization; Likelihood-based methods; Markov Chain Monte Carlo; Banking.;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:qld:uqcepa:173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SOE IT (email available below). General contact details of provider: https://edirc.repec.org/data/decuqau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.