[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v81y2011i2p212-219.html
   My bibliography  Save this article

Empirical likelihood for LAD estimators in infinite variance ARMA models

Author

Listed:
  • Li, Jinyu
  • Liang, Wei
  • He, Shuyuan
Abstract
In this paper, we use an empirical likelihood method to construct confidence regions for the stationary ARMA(p,q) models with infinite variance. An empirical log-likelihood ratio is derived by the estimating equation of the self-weighted LAD estimator. It is proved that the proposed statistic has an asymptotic standard chi-squared distribution. Simulation studies show that in a small sample case, the performance of empirical likelihood method is better than that of normal approximation of the LAD estimator in terms of the coverage accuracy.

Suggested Citation

  • Li, Jinyu & Liang, Wei & He, Shuyuan, 2011. "Empirical likelihood for LAD estimators in infinite variance ARMA models," Statistics & Probability Letters, Elsevier, vol. 81(2), pages 212-219, February.
  • Handle: RePEc:eee:stapro:v:81:y:2011:i:2:p:212-219
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(10)00329-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pan, Jiazhu & Wang, Hui & Yao, Qiwei, 2007. "Weighted least absolute deviations estimation for ARMA models with infinite variance," LSE Research Online Documents on Economics 5405, London School of Economics and Political Science, LSE Library.
    2. Davis, Richard A., 1996. "Gauss-Newton and M-estimation for ARMA processes with infinite variance," Stochastic Processes and their Applications, Elsevier, vol. 63(1), pages 75-95, October.
    3. Chan, Ngai Hang & Ling, Shiqing, 2006. "Empirical Likelihood For Garch Models," Econometric Theory, Cambridge University Press, vol. 22(3), pages 403-428, June.
    4. Pan, Jiazhu & Wang, Hui & Yao, Qiwei, 2007. "Weighted Least Absolute Deviations Estimation For Arma Models With Infinite Variance," Econometric Theory, Cambridge University Press, vol. 23(5), pages 852-879, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruidong Han & Xinghui Wang & Shuhe Hu, 2018. "Asymptotics of the weighted least squares estimation for AR(1) processes with applications to confidence intervals," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(3), pages 479-490, August.
    2. Fumiya Akashi, 2017. "Self-weighted generalized empirical likelihood methods for hypothesis testing in infinite variance ARMA models," Statistical Inference for Stochastic Processes, Springer, vol. 20(3), pages 291-313, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mo Zhou & Liang Peng & Rongmao Zhang, 2021. "Empirical likelihood test for the application of swqmele in fitting an arma‐garch model," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(2), pages 222-239, March.
    2. Bouhaddioui, Chafik & Ghoudi, Kilani, 2012. "Empirical processes for infinite variance autoregressive models," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 319-335.
    3. Rongning Wu & Richard A. Davis, 2010. "Least absolute deviation estimation for general autoregressive moving average time‐series models," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(2), pages 98-112, March.
    4. Xinghui Wang & Shuhe Hu, 2017. "Asymptotics of self-weighted M-estimators for autoregressive models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(1), pages 83-92, January.
    5. Ke Zhu & Shiqing Ling, 2015. "LADE-Based Inference for ARMA Models With Unspecified and Heavy-Tailed Heteroscedastic Noises," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 784-794, June.
    6. Zhu, Ke & Ling, Shiqing, 2013. "Global self-weighted and local quasi-maximum exponential likelihood estimators for ARMA-GARCH/IGARCH models," MPRA Paper 51509, University Library of Munich, Germany.
    7. Yining Chen, 2015. "Semiparametric Time Series Models with Log-concave Innovations: Maximum Likelihood Estimation and its Consistency," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 1-31, March.
    8. Pan, Jiazhu & Wang, Hui & Tong, Howell, 2008. "Estimation and tests for power-transformed and threshold GARCH models," Journal of Econometrics, Elsevier, vol. 142(1), pages 352-378, January.
    9. Ke-Ang Fu & Ting Li & Chang Ni & Wenkai He & Renshui Wu, 2021. "Asymptotics for the conditional self-weighted M-estimator of GRCA(1) models with possibly heavy-tailed errors," Statistical Papers, Springer, vol. 62(3), pages 1407-1419, June.
    10. Fumiya Akashi, 2017. "Self-weighted generalized empirical likelihood methods for hypothesis testing in infinite variance ARMA models," Statistical Inference for Stochastic Processes, Springer, vol. 20(3), pages 291-313, October.
    11. Chi Yao & Wei Yu & Xuejun Wang, 2023. "Strong Consistency for the Conditional Self-weighted M Estimator of GRCA(p) Models," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-21, March.
    12. Yang, Yaxing & Ling, Shiqing, 2017. "Self-weighted LAD-based inference for heavy-tailed threshold autoregressive models," Journal of Econometrics, Elsevier, vol. 197(2), pages 368-381.
    13. Xiaoyan Li & Jiazhu Pan & Anchao Song, 2023. "Geometric ergodicity and conditional self‐weighted M‐estimator of a GRCAR(p) model with heavy‐tailed errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(4), pages 418-436, July.
    14. Jiang, Feiyu & Li, Dong & Zhu, Ke, 2020. "Non-standard inference for augmented double autoregressive models with null volatility coefficients," Journal of Econometrics, Elsevier, vol. 215(1), pages 165-183.
    15. Zhang, Xingfa & Zhang, Rongmao & Li, Yuan & Ling, Shiqing, 2022. "LADE-based inferences for autoregressive models with heavy-tailed G-GARCH(1, 1) noise," Journal of Econometrics, Elsevier, vol. 227(1), pages 228-240.
    16. Feiyu Jiang & Dong Li & Ke Zhu, 2019. "Non-standard inference for augmented double autoregressive models with null volatility coefficients," Papers 1905.01798, arXiv.org.
    17. Ke Zhu, 2018. "Statistical inference for autoregressive models under heteroscedasticity of unknown form," Papers 1804.02348, arXiv.org, revised Aug 2018.
    18. Yang, Yaxing & Ling, Shiqing & Wang, Qiying, 2022. "Consistency of global LSE for MA(1) models," Statistics & Probability Letters, Elsevier, vol. 182(C).
    19. Wan, Phyllis & Davis, Richard A., 2022. "Goodness-of-fit testing for time series models via distance covariance," Journal of Econometrics, Elsevier, vol. 227(1), pages 4-24.
    20. Richard A. Davis & William T. M. Dunsmuir, 1997. "Least Absolute Deviation Estimation for Regression with ARMA Errors," Journal of Theoretical Probability, Springer, vol. 10(2), pages 481-497, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:81:y:2011:i:2:p:212-219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.