[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/59099.html
   My bibliography  Save this paper

LADE-based inference for ARMA models with unspecified and heavy-tailed heteroscedastic noises

Author

Listed:
  • Zhu, Ke
  • Ling, Shiqing
Abstract
This paper develops a systematic procedure of statistical inference for the ARMA model with unspecified and heavy-tailed heteroscedastic noises. We first investigate the least absolute deviation estimator (LADE) and the self-weighted LADE for the model. Both estimators are shown to be strongly consistent and asymptotically normal when the noise has a finite variance and infinite variance, respectively. The rates of convergence of the LADE and the self-weighted LADE are $n^{-1/2}$ which is faster than those of LSE for the AR model when the tail index of GARCH noises is in (0,4], and thus they are more efficient in this case. Since their asymptotic covariance matrices can not be estimated directly from the sample, we develop the random weighting approach for statistical inference under this nonstandard case. We further propose a novel sign-based portmanteau test for model adequacy. Simulation study is carried out to assess the performance of our procedure and one real illustrating example is given.

Suggested Citation

  • Zhu, Ke & Ling, Shiqing, 2014. "LADE-based inference for ARMA models with unspecified and heavy-tailed heteroscedastic noises," MPRA Paper 59099, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:59099
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/59099/1/MPRA_paper_59099.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Yang, Minxian & Bewley, Ronald, 1995. "Moving average conditional heteroskedastic processes," Economics Letters, Elsevier, vol. 49(4), pages 367-372, October.
    2. Ling, Shiqing & McAleer, Michael, 2003. "Asymptotic Theory For A Vector Arma-Garch Model," Econometric Theory, Cambridge University Press, vol. 19(2), pages 280-310, April.
    3. Zhang, Rong-Mao & Sin, Chor-yiu (CY) & Ling, Shiqing, 2015. "On functional limits of short- and long-memory linear processes with GARCH(1,1) noises," Stochastic Processes and their Applications, Elsevier, vol. 125(2), pages 482-512.
    4. Schwert, G William & Seguin, Paul J, 1990. "Heteroskedasticity in Stock Returns," Journal of Finance, American Finance Association, vol. 45(4), pages 1129-1155, September.
    5. Kani Chen & Zhiliang Ying & Hong Zhang & Lincheng Zhao, 2008. "Analysis of least absolute deviation," Biometrika, Biometrika Trust, vol. 95(1), pages 107-122.
    6. Robinson, P. M., 1977. "The estimation of a nonlinear moving average model," Stochastic Processes and their Applications, Elsevier, vol. 5(1), pages 81-90, February.
    7. Ling, Shiqing, 2007. "Self-weighted and local quasi-maximum likelihood estimators for ARMA-GARCH/IGARCH models," Journal of Econometrics, Elsevier, vol. 140(2), pages 849-873, October.
    8. Pan, Jiazhu & Wang, Hui & Yao, Qiwei, 2007. "Weighted least absolute deviations estimation for ARMA models with infinite variance," LSE Research Online Documents on Economics 5405, London School of Economics and Political Science, LSE Library.
    9. repec:bla:jfinan:v:44:y:1989:i:5:p:1115-53 is not listed on IDEAS
    10. Zhu, Ke & Li, Wai Keung, 2015. "A bootstrapped spectral test for adequacy in weak ARMA models," Journal of Econometrics, Elsevier, vol. 187(1), pages 113-130.
    11. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    12. Shiqing Ling & Michael McAleer, 2010. "A general asymptotic theory for time‐series models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 64(1), pages 97-111, February.
    13. He, Xuming, et al, 1990. "Tail Behavior of Regression Estimators and Their Breakdown Points," Econometrica, Econometric Society, vol. 58(5), pages 1195-1214, September.
    14. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    15. Davis, Richard A. & Knight, Keith & Liu, Jian, 1992. "M-estimation for autoregressions with infinite variance," Stochastic Processes and their Applications, Elsevier, vol. 40(1), pages 145-180, February.
    16. Chen, Kani & Guo, Shaojun & Lin, Yuanyuan & Ying, Zhiliang, 2010. "Least Absolute Relative Error Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1104-1112.
    17. Zhu, Ke & Ling, Shiqing, 2012. "THE GLOBAL WEIGHTED LAD ESTIMATORS FOR FINITE/INFINITE VARIANCE ARMA(p,q) MODELS," Econometric Theory, Cambridge University Press, vol. 28(5), pages 1065-1086, October.
    18. Koenker, Roger & Bassett, Gilbert, Jr, 1982. "Robust Tests for Heteroscedasticity Based on Regression Quantiles," Econometrica, Econometric Society, vol. 50(1), pages 43-61, January.
    19. Fornari, Fabio & Mele, Antonio, 1997. "Sign- and Volatility-Switching ARCH Models: Theory and Applications to International Stock Markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(1), pages 49-65, Jan.-Feb..
    20. He, Changli & Terasvirta, Timo, 1999. "Properties of moments of a family of GARCH processes," Journal of Econometrics, Elsevier, vol. 92(1), pages 173-192, September.
    21. Yao, Qiwei & Brockwell, Peter J, 2006. "Gaussian maximum likelihood estimation for ARMA models II: spatial processes," LSE Research Online Documents on Economics 5416, London School of Economics and Political Science, LSE Library.
    22. Davis, Richard A., 1996. "Gauss-Newton and M-estimation for ARMA processes with infinite variance," Stochastic Processes and their Applications, Elsevier, vol. 63(1), pages 75-95, October.
    23. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    24. Rongning Wu & Richard A. Davis, 2010. "Least absolute deviation estimation for general autoregressive moving average time‐series models," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(2), pages 98-112, March.
    25. Yao, Qiwei & Brockwell, Peter J, 2006. "Gaussian maximum likelihood estimation for ARMA models. I. Time series," LSE Research Online Documents on Economics 57580, London School of Economics and Political Science, LSE Library.
    26. Guodong Li & Wai Keung Li, 2008. "Least absolute deviation estimation for fractionally integrated autoregressive moving average time series models with conditional heteroscedasticity," Biometrika, Biometrika Trust, vol. 95(2), pages 399-414.
    27. Lucas, André, 1995. "Unit Root Tests Based on M Estimators," Econometric Theory, Cambridge University Press, vol. 11(2), pages 331-346, February.
    28. Shiqing Ling, 2005. "Self‐weighted least absolute deviation estimation for infinite variance autoregressive models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(3), pages 381-393, June.
    29. Qiwei Yao & Peter J. Brockwell, 2006. "Gaussian Maximum Likelihood Estimation For ARMA Models. I. Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(6), pages 857-875, November.
    30. Zakoian, Jean-Michel, 1994. "Threshold heteroskedastic models," Journal of Economic Dynamics and Control, Elsevier, vol. 18(5), pages 931-955, September.
    31. Keith Knight, 1987. "Rate Of Convergence Of Centred Estimates Of Autoregressive Parameters For Infinite Variance Autoregressions," Journal of Time Series Analysis, Wiley Blackwell, vol. 8(1), pages 51-60, January.
    32. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    33. Ngai Hang Chan & Liang Peng, 2005. "Weighted least absolute deviations estimation for an AR(1) process with ARCH(1) errors," Biometrika, Biometrika Trust, vol. 92(2), pages 477-484, June.
    34. Pan, Jiazhu & Wang, Hui & Yao, Qiwei, 2007. "Weighted Least Absolute Deviations Estimation For Arma Models With Infinite Variance," Econometric Theory, Cambridge University Press, vol. 23(5), pages 852-879, October.
    35. Yao, Qiwei & Brockwell, Peter J., 2006. "Gaussian maximum likelihood estimation for ARMA models I: time series," LSE Research Online Documents on Economics 5825, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ke Zhu, 2016. "Bootstrapping the portmanteau tests in weak auto-regressive moving average models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 463-485, March.
    2. Ding, Jing & Jiang, Lei & Liu, Xiaohui & Peng, Liang, 2023. "Nonparametric tests for market timing ability using daily mutual fund returns," Journal of Economic Dynamics and Control, Elsevier, vol. 150(C).
    3. Feiyu Jiang & Dong Li & Ke Zhu, 2019. "Non-standard inference for augmented double autoregressive models with null volatility coefficients," Papers 1905.01798, arXiv.org.
    4. Ke Zhu, 2018. "Statistical inference for autoregressive models under heteroscedasticity of unknown form," Papers 1804.02348, arXiv.org, revised Aug 2018.
    5. Jiang, Feiyu & Li, Dong & Zhu, Ke, 2020. "Non-standard inference for augmented double autoregressive models with null volatility coefficients," Journal of Econometrics, Elsevier, vol. 215(1), pages 165-183.
    6. Zhang, Xingfa & Zhang, Rongmao & Li, Yuan & Ling, Shiqing, 2022. "LADE-based inferences for autoregressive models with heavy-tailed G-GARCH(1, 1) noise," Journal of Econometrics, Elsevier, vol. 227(1), pages 228-240.
    7. Yang, Yaxing & Ling, Shiqing & Wang, Qiying, 2022. "Consistency of global LSE for MA(1) models," Statistics & Probability Letters, Elsevier, vol. 182(C).
    8. Aboagye, Ernest & Ko, Stanley Iat-Meng & Lo, Chia Chun & Hsiao, Cody Yu-Ling & Peng, Liang, 2024. "A contagion test with unspecified heteroscedastic errors," Journal of Economic Dynamics and Control, Elsevier, vol. 159(C).
    9. Li, Dong & Ling, Shiqing & Zhu, Ke, 2016. "ZD-GARCH model: a new way to study heteroscedasticity," MPRA Paper 68621, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Ke & Ling, Shiqing, 2013. "Global self-weighted and local quasi-maximum exponential likelihood estimators for ARMA-GARCH/IGARCH models," MPRA Paper 51509, University Library of Munich, Germany.
    2. Zhang, Xingfa & Zhang, Rongmao & Li, Yuan & Ling, Shiqing, 2022. "LADE-based inferences for autoregressive models with heavy-tailed G-GARCH(1, 1) noise," Journal of Econometrics, Elsevier, vol. 227(1), pages 228-240.
    3. Ke Zhu, 2018. "Statistical inference for autoregressive models under heteroscedasticity of unknown form," Papers 1804.02348, arXiv.org, revised Aug 2018.
    4. Ling, Shiqing & McAleer, Michael, 2002. "Stationarity and the existence of moments of a family of GARCH processes," Journal of Econometrics, Elsevier, vol. 106(1), pages 109-117, January.
    5. Yang, Yaxing & Ling, Shiqing & Wang, Qiying, 2022. "Consistency of global LSE for MA(1) models," Statistics & Probability Letters, Elsevier, vol. 182(C).
    6. Dominique Guegan & Bertrand K. Hassani, 2019. "Risk Measurement," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-02119256, HAL.
    7. Meitz, Mika & Saikkonen, Pentti, 2011. "Parameter Estimation In Nonlinear Ar–Garch Models," Econometric Theory, Cambridge University Press, vol. 27(6), pages 1236-1278, December.
    8. Bouhaddioui, Chafik & Ghoudi, Kilani, 2012. "Empirical processes for infinite variance autoregressive models," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 319-335.
    9. Yang, Yaxing & Ling, Shiqing, 2017. "Self-weighted LAD-based inference for heavy-tailed threshold autoregressive models," Journal of Econometrics, Elsevier, vol. 197(2), pages 368-381.
    10. Xinghui Wang & Shuhe Hu, 2017. "Asymptotics of self-weighted M-estimators for autoregressive models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(1), pages 83-92, January.
    11. Li, Ming-Yuan Leon, 2008. "Clarifying the dynamics of the relationship between option and stock markets using the threshold vector error correction model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(3), pages 511-520.
    12. Carnero, María Ángeles, 2001. "Outliers and conditional autoregressive heteroscedasticity in time series," DES - Working Papers. Statistics and Econometrics. WS ws010704, Universidad Carlos III de Madrid. Departamento de Estadística.
    13. Ke Zhu, 2016. "Bootstrapping the portmanteau tests in weak auto-regressive moving average models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 463-485, March.
    14. Zhu, Qianqian & Zheng, Yao & Li, Guodong, 2018. "Linear double autoregression," Journal of Econometrics, Elsevier, vol. 207(1), pages 162-174.
    15. Ding, Jing & Jiang, Lei & Liu, Xiaohui & Peng, Liang, 2023. "Nonparametric tests for market timing ability using daily mutual fund returns," Journal of Economic Dynamics and Control, Elsevier, vol. 150(C).
    16. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    17. Francesco Audrino & Fabio Trojani, 2006. "Estimating and predicting multivariate volatility thresholds in global stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 345-369, April.
    18. Martinez Oscar & Olmo Jose, 2012. "A Nonlinear Threshold Model for the Dependence of Extremes of Stationary Sequences," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(3), pages 1-39, September.
    19. Mo Zhou & Liang Peng & Rongmao Zhang, 2021. "Empirical likelihood test for the application of swqmele in fitting an arma‐garch model," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(2), pages 222-239, March.
    20. Pan, Jiazhu & Wang, Hui & Tong, Howell, 2008. "Estimation and tests for power-transformed and threshold GARCH models," Journal of Econometrics, Elsevier, vol. 142(1), pages 352-378, January.

    More about this item

    Keywords

    ARMA(p; q) models; Asymptotic normality; Heavy-tailed noises; G/ARCH noises; LADE; Random weighting approach; Self-weighted LADE; Sign-based portmanteau test; Strong consistency.;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:59099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.