[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1905.01798.html
   My bibliography  Save this paper

Non-standard inference for augmented double autoregressive models with null volatility coefficients

Author

Listed:
  • Feiyu Jiang
  • Dong Li
  • Ke Zhu
Abstract
This paper considers an augmented double autoregressive (DAR) model, which allows null volatility coefficients to circumvent the over-parameterization problem in the DAR model. Since the volatility coefficients might be on the boundary, the statistical inference methods based on the Gaussian quasi-maximum likelihood estimation (GQMLE) become non-standard, and their asymptotics require the data to have a finite sixth moment, which narrows applicable scope in studying heavy-tailed data. To overcome this deficiency, this paper develops a systematic statistical inference procedure based on the self-weighted GQMLE for the augmented DAR model. Except for the Lagrange multiplier test statistic, the Wald, quasi-likelihood ratio and portmanteau test statistics are all shown to have non-standard asymptotics. The entire procedure is valid as long as the data is stationary, and its usefulness is illustrated by simulation studies and one real example.

Suggested Citation

  • Feiyu Jiang & Dong Li & Ke Zhu, 2019. "Non-standard inference for augmented double autoregressive models with null volatility coefficients," Papers 1905.01798, arXiv.org.
  • Handle: RePEc:arx:papers:1905.01798
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1905.01798
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Francq, Christian & Zakoïan, Jean-Michel, 2009. "Testing the Nullity of GARCH Coefficients: Correction of the Standard Tests and Relative Efficiency Comparisons," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 313-324.
    2. Min Chen & Dong Li & Shiqing Ling, 2014. "Non-Stationarity And Quasi-Maximum Likelihood Estimation On A Double Autoregressive Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(3), pages 189-202, May.
    3. Gourieroux, Christian & Holly, Alberto & Monfort, Alain, 1982. "Likelihood Ratio Test, Wald Test, and Kuhn-Tucker Test in Linear Models with Inequality Constraints on the Regression Parameters," Econometrica, Econometric Society, vol. 50(1), pages 63-80, January.
    4. Donald W. K. Andrews, 2000. "Inconsistency of the Bootstrap when a Parameter Is on the Boundary of the Parameter Space," Econometrica, Econometric Society, vol. 68(2), pages 399-406, March.
    5. Newey, Whitney K, 1991. "Uniform Convergence in Probability and Stochastic Equicontinuity," Econometrica, Econometric Society, vol. 59(4), pages 1161-1167, July.
    6. Donald W. K. Andrews, 1999. "Estimation When a Parameter Is on a Boundary," Econometrica, Econometric Society, vol. 67(6), pages 1341-1384, November.
    7. Andrew A. Weiss, 1984. "Arma Models With Arch Errors," Journal of Time Series Analysis, Wiley Blackwell, vol. 5(2), pages 129-143, March.
    8. Ke Zhu, 2016. "Bootstrapping the portmanteau tests in weak auto-regressive moving average models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 463-485, March.
    9. W. K. Li & T. K. Mak, 1994. "On The Squared Residual Autocorrelations In Non‐Linear Time Series With Conditional Heteroskedasticity," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(6), pages 627-636, November.
    10. Francq, Christian & Zakoïan, Jean-Michel, 2010. "Inconsistency of the MLE and inference based on weighted LS for LARCH models," Journal of Econometrics, Elsevier, vol. 159(1), pages 151-165, November.
    11. Ke Zhu & Shiqing Ling, 2015. "LADE-Based Inference for ARMA Models With Unspecified and Heavy-Tailed Heteroscedastic Noises," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 784-794, June.
    12. Zhang, Rongmao & Ling, Shiqing, 2015. "Asymptotic Inference For Ar Models With Heavy-Tailed G-Garch Noises," Econometric Theory, Cambridge University Press, vol. 31(4), pages 880-890, August.
    13. Pedersen, Rasmus Søndergaard, 2017. "Inference and testing on the boundary in extended constant conditional correlation GARCH models," Journal of Econometrics, Elsevier, vol. 196(1), pages 23-36.
    14. repec:hal:journl:peer-00732536 is not listed on IDEAS
    15. Giuseppe Cavaliere & Heino Bohn Nielsen & Anders Rahbek, 2017. "On the Consistency of Bootstrap Testing for a Parameter on the Boundary of the Parameter Space," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(4), pages 513-534, July.
    16. Francq, Christian & Zakoian, Jean-Michel, 2007. "Quasi-maximum likelihood estimation in GARCH processes when some coefficients are equal to zero," Stochastic Processes and their Applications, Elsevier, vol. 117(9), pages 1265-1284, September.
    17. Shiqing Ling, 2004. "Estimation and testing stationarity for double‐autoregressive models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 63-78, February.
    18. Andrews, Donald W K, 2001. "Testing When a Parameter Is on the Boundary of the Maintained Hypothesis," Econometrica, Econometric Society, vol. 69(3), pages 683-734, May.
    19. Ling, Shiqing, 2007. "Self-weighted and local quasi-maximum likelihood estimators for ARMA-GARCH/IGARCH models," Journal of Econometrics, Elsevier, vol. 140(2), pages 849-873, October.
    20. Shiqing Ling, 2005. "Self‐weighted least absolute deviation estimation for infinite variance autoregressive models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(3), pages 381-393, June.
    21. Pan, Jiazhu & Wang, Hui & Yao, Qiwei, 2007. "Weighted Least Absolute Deviations Estimation For Arma Models With Infinite Variance," Econometric Theory, Cambridge University Press, vol. 23(5), pages 852-879, October.
    22. Pan, Jiazhu & Wang, Hui & Yao, Qiwei, 2007. "Weighted least absolute deviations estimation for ARMA models with infinite variance," LSE Research Online Documents on Economics 5405, London School of Economics and Political Science, LSE Library.
    23. Yang, Yaxing & Ling, Shiqing, 2017. "Self-weighted LAD-based inference for heavy-tailed threshold autoregressive models," Journal of Econometrics, Elsevier, vol. 197(2), pages 368-381.
    24. Iglesias, Emma M. & Linton, Oliver B., 2007. "Higher Order Asymptotic Theory When A Parameter Is On A Boundary With An Application To Garch Models," Econometric Theory, Cambridge University Press, vol. 23(6), pages 1136-1161, December.
    25. Heung Wong & Shiqing Ling, 2005. "Mixed Portmanteau Tests for Time‐Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(4), pages 569-579, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Feiyu & Li, Dong & Zhu, Ke, 2020. "Non-standard inference for augmented double autoregressive models with null volatility coefficients," Journal of Econometrics, Elsevier, vol. 215(1), pages 165-183.
    2. Cavaliere, Giuseppe & Nielsen, Heino Bohn & Pedersen, Rasmus Søndergaard & Rahbek, Anders, 2022. "Bootstrap inference on the boundary of the parameter space, with application to conditional volatility models," Journal of Econometrics, Elsevier, vol. 227(1), pages 241-263.
    3. Zhang, Xingfa & Zhang, Rongmao & Li, Yuan & Ling, Shiqing, 2022. "LADE-based inferences for autoregressive models with heavy-tailed G-GARCH(1, 1) noise," Journal of Econometrics, Elsevier, vol. 227(1), pages 228-240.
    4. Gregory Fletcher Cox, 2024. "A Simple and Adaptive Confidence Interval when Nuisance Parameters Satisfy an Inequality," Papers 2409.09962, arXiv.org.
    5. Ben, Youhong & Jiang, Feiyu, 2020. "A note on Portmanteau tests for conditional heteroscedastistic models," Economics Letters, Elsevier, vol. 192(C).
    6. Guo, Shaojun & Li, Dong & Li, Muyi, 2019. "Strict stationarity testing and GLAD estimation of double autoregressive models," Journal of Econometrics, Elsevier, vol. 211(2), pages 319-337.
    7. Pedersen, Rasmus Søndergaard & Rahbek, Anders, 2019. "Testing Garch-X Type Models," Econometric Theory, Cambridge University Press, vol. 35(5), pages 1012-1047, October.
    8. Ke Zhu, 2018. "Statistical inference for autoregressive models under heteroscedasticity of unknown form," Papers 1804.02348, arXiv.org, revised Aug 2018.
    9. Xuanling Yang & Dong Li, 2022. "Estimation of the empirical risk‐return relation: A generalized‐risk‐in‐mean model," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(6), pages 938-963, November.
    10. Francq, Christian & Zakoïan, Jean-Michel, 2009. "Testing the Nullity of GARCH Coefficients: Correction of the Standard Tests and Relative Efficiency Comparisons," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 313-324.
    11. Zhu, Ke & Ling, Shiqing, 2013. "Global self-weighted and local quasi-maximum exponential likelihood estimators for ARMA-GARCH/IGARCH models," MPRA Paper 51509, University Library of Munich, Germany.
    12. Xinghui Wang & Shuhe Hu, 2017. "Asymptotics of self-weighted M-estimators for autoregressive models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(1), pages 83-92, January.
    13. Pedersen, Rasmus Søndergaard, 2017. "Inference and testing on the boundary in extended constant conditional correlation GARCH models," Journal of Econometrics, Elsevier, vol. 196(1), pages 23-36.
    14. Ketz, Philipp, 2018. "Subvector inference when the true parameter vector may be near or at the boundary," Journal of Econometrics, Elsevier, vol. 207(2), pages 285-306.
    15. Francq, Christian & Thieu, Le Quyen, 2019. "Qml Inference For Volatility Models With Covariates," Econometric Theory, Cambridge University Press, vol. 35(1), pages 37-72, February.
    16. Fumiya Akashi, 2017. "Self-weighted generalized empirical likelihood methods for hypothesis testing in infinite variance ARMA models," Statistical Inference for Stochastic Processes, Springer, vol. 20(3), pages 291-313, October.
    17. Nielsen, Heino Bohn & Rahbek, Anders, 2014. "Unit root vector autoregression with volatility induced stationarity," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 144-167.
    18. Ke Zhu & Shiqing Ling, 2015. "LADE-Based Inference for ARMA Models With Unspecified and Heavy-Tailed Heteroscedastic Noises," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 784-794, June.
    19. Royer, Julien, 2021. "Conditional asymmetry in Power ARCH($\infty$) models," MPRA Paper 109118, University Library of Munich, Germany.
    20. Li, Dong & Ling, Shiqing & Zhu, Ke, 2016. "ZD-GARCH model: a new way to study heteroscedasticity," MPRA Paper 68621, University Library of Munich, Germany.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1905.01798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.