[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v72y2018icp166-177.html
   My bibliography  Save this article

Residential dissonance in TOD neighborhoods

Author

Listed:
  • Phani Kumar, P.
  • Ravi Sekhar, Ch.
  • Parida, Manoranjan
Abstract
Metro rail transit (MRT) system in Indian urban areas is growing at a rapid rate, to enhance public transportation and decongest the road transportation. To assess the neighborhoods of urban areas it is essential to evaluate the behavioral attitudes of commuters. Existing studies have shown that behavioral attitudes influence residential selection and mode choice, which might result in a dissonance between individuals' preference and actuality in residence. Residential dissonance has become a critical issue that affects commuter mode choice in urban areas. Majority of studies on residential dissonance were conducted in developed countries. This research is still at the infancy stage in developing countries like India. The objective of this study is to fill this gap by evaluating the effect of residential dissonance on commuter mode choice behavior in National Capital Territory (NCT) of Delhi. For this, 2633 individual responses from Transit Oriented Development (TOD) and non-TOD neighborhoods of NCT Delhi were considered. The actual neighborhood types were derived by using Two-step cluster analysis and the preferred neighborhood types were derived by using a binary logit model. The dissonance analysis shows that 23.25% of TOD residents were dissonant in NCT Delhi. The study findings suggest that an attitudinal change of 0.5 units might change an average of 26% of consonance/dissonance levels in TOD neighborhoods. Multinomial Logit (MNL) models were employed to understand the mode choice and dissonance connections. The MNL model results show that the presence of women commuters and their safety will enhance the choice of active transport in TODs and public transport in non-TODs in NCT Delhi. Findings of this study will contribute to the necessary policy implications towards urban structure design and TOD policies to the developing world, especially in the Indian context.

Suggested Citation

  • Phani Kumar, P. & Ravi Sekhar, Ch. & Parida, Manoranjan, 2018. "Residential dissonance in TOD neighborhoods," Journal of Transport Geography, Elsevier, vol. 72(C), pages 166-177.
  • Handle: RePEc:eee:jotrge:v:72:y:2018:i:c:p:166-177
    DOI: 10.1016/j.jtrangeo.2018.09.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692318302680
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2018.09.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. De Vos, Jonas & Derudder, Ben & Van Acker, Veronique & Witlox, Frank, 2012. "Reducing car use: changing attitudes or relocating? The influence of residential dissonance on travel behavior," Journal of Transport Geography, Elsevier, vol. 22(C), pages 1-9.
    2. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    3. Alan Hoback & Scott Anderson & Utpal Dutta, 2008. "True Walking Distance to Transit," Transportation Planning and Technology, Taylor & Francis Journals, vol. 31(6), pages 681-692, September.
    4. Anonymous, 2014. "Introduction to the Issue," Journal of Wine Economics, Cambridge University Press, vol. 9(1), pages 1-2, May.
    5. Huang, Xiaoyan & Cao, Xinyu (Jason) & Cao, Xiaoshu & Yin, Jiangbin, 2016. "How does the propensity of living near rail transit moderate the influence of rail transit on transit trip frequency in Xi'an?," Journal of Transport Geography, Elsevier, vol. 54(C), pages 194-204.
    6. Schwanen, Tim & Mokhtarian, Patricia L., 2003. "The Extent and Determinants of Dissonance Between Actual and Preferred Residential Neighborhood Type," University of California Transportation Center, Working Papers qt8728p24s, University of California Transportation Center.
    7. Kamruzzaman, Md. & Baker, Douglas & Washington, Simon & Turrell, Gavin, 2013. "Residential dissonance and mode choice," Journal of Transport Geography, Elsevier, vol. 33(C), pages 12-28.
    8. Prillwitz, Jan & Barr, Stewart, 2011. "Moving towards sustainability? Mobility styles, attitudes and individual travel behaviour," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1590-1600.
    9. Frank, Lawrence Douglas & Saelens, Brian E. & Powell, Ken E. & Chapman, James E., 2007. "Stepping towards causation: Do built environments or neighborhood and travel preferences explain physical activity, driving, and obesity?," Social Science & Medicine, Elsevier, vol. 65(9), pages 1898-1914, November.
    10. Daniel G Chatman, 2009. "Residential Choice, the Built Environment, and Nonwork Travel: Evidence Using New Data and Methods," Environment and Planning A, , vol. 41(5), pages 1072-1089, May.
    11. Md. Kamruzzaman & Simon Washington & Douglas Baker & Wendy Brown & Billie Giles-Corti & Gavin Turrell, 2016. "Built environment impacts on walking for transport in Brisbane, Australia," Transportation, Springer, vol. 43(1), pages 53-77, January.
    12. Singh, Yamini Jain & Lukman, Azhari & Flacke, Johannes & Zuidgeest, Mark & Van Maarseveen, M.F.A.M., 2017. "Measuring TOD around transit nodes - Towards TOD policy," Transport Policy, Elsevier, vol. 56(C), pages 96-111.
    13. Kamruzzaman, Md. & Baker, Douglas & Washington, Simon & Turrell, Gavin, 2014. "Advance transit oriented development typology: case study in Brisbane, Australia," Journal of Transport Geography, Elsevier, vol. 34(C), pages 54-70.
    14. Matti Siemiatycki, 2006. "Message in a Metro: Building Urban Rail Infrastructure and Image in Delhi, India," International Journal of Urban and Regional Research, Wiley Blackwell, vol. 30(2), pages 277-292, June.
    15. Naess, Petter, 2010. "Residential Location, Travel, and Energy Use in the Hangzhou Metropolitan Area," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 3(3), pages 27-59.
    16. Bhat, Chandra R. & Eluru, Naveen, 2009. "A copula-based approach to accommodate residential self-selection effects in travel behavior modeling," Transportation Research Part B: Methodological, Elsevier, vol. 43(7), pages 749-765, August.
    17. Cao, Jason, 2014. "Residential self-selection in the relationships between the built environment and travel behavior: Introduction to the special issue," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 7(3), pages 1-3.
    18. Cao, Xinyu (Jason) & Mokhtarian, Patricia L. & Handy, Susan L., 2009. "The relationship between the built environment and nonwork travel: A case study of Northern California," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(5), pages 548-559, June.
    19. Schwanen, Tim & Mokhtarian, Patricia L., 2005. "What if You Live in the Wrong Neighborhood? The Impact of Residential Neighborhood Type Dissonance on Distance Traveled," University of California Transportation Center, Working Papers qt5hh713d6, University of California Transportation Center.
    20. Ettema, Dick & Nieuwenhuis, Roy, 2017. "Residential self-selection and travel behaviour: What are the effects of attitudes, reasons for location choice and the built environment?," Journal of Transport Geography, Elsevier, vol. 59(C), pages 146-155.
    21. Christopher Zegras, 2010. "The Built Environment and Motor Vehicle Ownership and Use: Evidence from Santiago de Chile," Urban Studies, Urban Studies Journal Limited, vol. 47(8), pages 1793-1817, July.
    22. Lindsey, Marshall & Schofer, Joseph L. & Durango-Cohen, Pablo & Gray, Kimberly A., 2010. "Relationship between proximity to transit and ridership for journey-to-work trips in Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(9), pages 697-709, November.
    23. Cho, Gi-Hyoug & Rodríguez, Daniel A., 2014. "The influence of residential dissonance on physical activity and walking: evidence from the Montgomery County, MD, and Twin Cities, MN, areas," Journal of Transport Geography, Elsevier, vol. 41(C), pages 259-267.
    24. Papa, Enrica & Bertolini, Luca, 2015. "Accessibility and Transit-Oriented Development in European metropolitan areas," Journal of Transport Geography, Elsevier, vol. 47(C), pages 70-83.
    25. Guang Tian & Reid Ewing & Rachel Weinberger & Kevin Shively & Preston Stinger & Shima Hamidi, 2017. "Trip and parking generation at transit-oriented developments: a case study of Redmond TOD, Seattle region," Transportation, Springer, vol. 44(5), pages 1235-1254, September.
    26. Boarnet, Marlon & Crane, Randall, 2001. "The influence of land use on travel behavior: specification and estimation strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(9), pages 823-845, November.
    27. Anonymous, 2014. "Introduction to the Issue," Journal of Wine Economics, Cambridge University Press, vol. 9(2), pages 109-110, August.
    28. Thomas Klinger & Martin Lanzendorf, 2016. "Moving between mobility cultures: what affects the travel behavior of new residents?," Transportation, Springer, vol. 43(2), pages 243-271, March.
    29. Xinyu (Jason) Cao, 2010. "Exploring Causal Effects of Neighborhood Type on Walking Behavior Using Stratification on the Propensity Score," Environment and Planning A, , vol. 42(2), pages 487-504, February.
    30. Xinyu (Jason) Cao, 2009. "Disentangling the influence of neighborhood type and self-selection on driving behavior: an application of sample selection model," Transportation, Springer, vol. 36(2), pages 207-222, March.
    31. Tim Schwanen & Patricia L Mokhtarian, 2004. "The Extent and Determinants of Dissonance between Actual and Preferred Residential Neighborhood Type," Environment and Planning B, , vol. 31(5), pages 759-784, October.
    32. Md. Kamruzzaman & Simon Washington & Douglas Baker & Wendy Brown & Billie Giles-Corti & Gavin Turrell, 2016. "Built environment impacts on walking for transport in Brisbane, Australia," Transportation, Springer, vol. 43(1), pages 53-77, January.
    33. Olaru, Doina & Smith, Brett & Taplin, John H.E., 2011. "Residential location and transit-oriented development in a new rail corridor," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(3), pages 219-237, March.
    34. Nasri, Arefeh & Zhang, Lei, 2014. "The analysis of transit-oriented development (TOD) in Washington, D.C. and Baltimore metropolitan areas," Transport Policy, Elsevier, vol. 32(C), pages 172-179.
    35. Cervero, Robert B., 2013. "Linking urban transport and land use in developing countries," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 6(1), pages 7-24.
    36. Jinhyun Hong & Qing Shen & Lei Zhang, 2014. "How do built-environment factors affect travel behavior? A spatial analysis at different geographic scales," Transportation, Springer, vol. 41(3), pages 419-440, May.
    37. Cao, Xinyu (Jason), 2015. "Heterogeneous effects of neighborhood type on commute mode choice: An exploration of residential dissonance in the Twin Cities," Journal of Transport Geography, Elsevier, vol. 48(C), pages 188-196.
    38. Zhang, Lei & Hong, Jin Hyun & Nasri, Arefeh & Shen, Qing, 2012. "How built environment affects travel behavior: A comparative analysis of the connections between land use and vehicle miles traveled in US cities," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 5(3), pages 40-52.
    39. Schwanen, Tim & Mokhtarian, Patricia L., 2005. "What Affects Commute Mode Choice: Neighborhood Physical Structure or Preferences Toward Neighborhoods?," University of California Transportation Center, Working Papers qt4nq9r1c9, University of California Transportation Center.
    40. Carol Atkinson-Palombo, 2010. "Comparing the Capitalisation Benefits of Light-rail Transit and Overlay Zoning for Single-family Houses and Condos by Neighbourhood Type in Metropolitan Phoenix, Arizona," Urban Studies, Urban Studies Journal Limited, vol. 47(11), pages 2409-2426, October.
    41. Mario Cools & Elke Moons & Brecht Janssens & Geert Wets, 2009. "Shifting towards environment-friendly modes: profiling travelers using Q-methodology," Transportation, Springer, vol. 36(4), pages 437-453, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Yu & Parker, Dawn & Minaker, Leia, 2021. "Identifying latent demand for transit-oriented development neighbourhoods: Evidence from a mid-sized urban area in Canada," Journal of Transport Geography, Elsevier, vol. 90(C).
    2. Qiaoling Fang & Tomo Inoue & Dongqi Li & Qiang Liu & Jian Ma, 2023. "Transit-Oriented Development and Sustainable Cities: A Visual Analysis of the Literature Based on CiteSpace and VOSviewer," Sustainability, MDPI, vol. 15(10), pages 1-18, May.
    3. Ashik, F.R. & Sreezon, A.I.Z. & Rahman, M.H. & Zafri, N.M. & Labib, S.M., 2024. "Built environment influences commute mode choice in a global south megacity context: Insights from explainable machine learning approach," Journal of Transport Geography, Elsevier, vol. 116(C).
    4. Su, Shiliang & Wang, Zhuolun & Li, Bozhao & Kang, Mengjun, 2022. "Deciphering the influence of TOD on metro ridership: An integrated approach of extended node-place model and interpretable machine learning with planning implications," Journal of Transport Geography, Elsevier, vol. 104(C).
    5. Faan Chen & Adriano Borges Costa, 2024. "Exploring the causal effects of the built environment on travel behavior: a unique randomized experiment in Shanghai," Transportation, Springer, vol. 51(1), pages 215-245, February.
    6. Gupta, Akshay & Bivina, G.R. & Parida, Manoranjan, 2022. "Does neighborhood design matter for walk access to metro stations? An integrated SEM-Hybrid discrete mode choice approach," Transport Policy, Elsevier, vol. 121(C), pages 61-77.
    7. Su, Shiliang & Zhang, Hui & Wang, Miao & Weng, Min & Kang, Mengjun, 2021. "Transit-oriented development (TOD) typologies around metro station areas in urban China: A comparative analysis of five typical megacities for planning implications," Journal of Transport Geography, Elsevier, vol. 90(C).
    8. Jingming Liu & Xianhui Hou & Chuyu Xia & Xiang Kang & Yujun Zhou, 2021. "Examining the Spatial Coordination between Metrorail Accessibility and Urban Spatial Form in the Context of Big Data," Land, MDPI, vol. 10(6), pages 1-20, May.
    9. Matthew Wigginton Bhagat-Conway & Laura Mirtich & Deborah Salon & Nathan Harness & Alexis Consalvo & Shuyao Hong, 2024. "Subjective variables in travel behavior models: a critical review and Standardized Transport Attitude Measurement Protocol (STAMP)," Transportation, Springer, vol. 51(1), pages 155-191, February.
    10. Kamruzzaman, Md. & Giles-Corti, Billie & De Vos, Jonas & Witlox, Frank & Shatu, Farjana & Turrell, Gavin, 2021. "The life and death of residential dissonants in transit-oriented development: A discrete time survival analysis," Journal of Transport Geography, Elsevier, vol. 90(C).
    11. Wood, Astrid & Kębłowski, Wojciech & Tuvikene, Tauri, 2020. "Decolonial approaches to urban transport geographies: Introduction to the special issue," Journal of Transport Geography, Elsevier, vol. 88(C).
    12. De Vos, Jonas & Singleton, Patrick A., 2020. "Travel and cognitive dissonance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 525-536.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Tao & Wang, Donggen & Guan, Xiaodong, 2017. "The built environment, travel attitude, and travel behavior: Residential self-selection or residential determination?," Journal of Transport Geography, Elsevier, vol. 65(C), pages 111-122.
    2. De Vos, Jonas & Ettema, Dick & Witlox, Frank, 2018. "Changing travel behaviour and attitudes following a residential relocation," Journal of Transport Geography, Elsevier, vol. 73(C), pages 131-147.
    3. De Vos, Jonas & Singleton, Patrick A., 2020. "Travel and cognitive dissonance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 525-536.
    4. Kajosaari, Anna & Hasanzadeh, Kamyar & Kyttä, Marketta, 2019. "Residential dissonance and walking for transport," Journal of Transport Geography, Elsevier, vol. 74(C), pages 134-144.
    5. Donggen Wang & Tao Lin, 2019. "Built environment, travel behavior, and residential self-selection: a study based on panel data from Beijing, China," Transportation, Springer, vol. 46(1), pages 51-74, February.
    6. Kamruzzaman, Md. & Giles-Corti, Billie & De Vos, Jonas & Witlox, Frank & Shatu, Farjana & Turrell, Gavin, 2021. "The life and death of residential dissonants in transit-oriented development: A discrete time survival analysis," Journal of Transport Geography, Elsevier, vol. 90(C).
    7. van Wee, Bert & De Vos, Jonas & Maat, Kees, 2019. "Impacts of the built environment and travel behaviour on attitudes: Theories underpinning the reverse causality hypothesis," Journal of Transport Geography, Elsevier, vol. 80(C).
    8. De Vos, Jonas & Mouratidis, Kostas & Cheng, Long & Kamruzzaman, Md., 2021. "Does a residential relocation enable satisfying travel?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 188-201.
    9. Huang, Xiaoyan & Cao, Xinyu (Jason) & Cao, Xiaoshu & Yin, Jiangbin, 2016. "How does the propensity of living near rail transit moderate the influence of rail transit on transit trip frequency in Xi'an?," Journal of Transport Geography, Elsevier, vol. 54(C), pages 194-204.
    10. Kamruzzaman, Md. & Baker, Douglas & Washington, Simon & Turrell, Gavin, 2013. "Residential dissonance and mode choice," Journal of Transport Geography, Elsevier, vol. 33(C), pages 12-28.
    11. van de Coevering, Paul & Maat, Kees & van Wee, Bert, 2018. "Residential self-selection, reverse causality and residential dissonance. A latent class transition model of interactions between the built environment, travel attitudes and travel behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 466-479.
    12. Wolday, Fitwi & Cao, Jason & Næss, Petter, 2018. "Examining factors that keep residents with high transit preference away from transit-rich zones and associated behavior outcomes," Journal of Transport Geography, Elsevier, vol. 66(C), pages 224-234.
    13. Faan Chen & Adriano Borges Costa, 2024. "Exploring the causal effects of the built environment on travel behavior: a unique randomized experiment in Shanghai," Transportation, Springer, vol. 51(1), pages 215-245, February.
    14. Ettema, Dick & Nieuwenhuis, Roy, 2017. "Residential self-selection and travel behaviour: What are the effects of attitudes, reasons for location choice and the built environment?," Journal of Transport Geography, Elsevier, vol. 59(C), pages 146-155.
    15. Cho, Gi-Hyoug & Rodríguez, Daniel A., 2014. "The influence of residential dissonance on physical activity and walking: evidence from the Montgomery County, MD, and Twin Cities, MN, areas," Journal of Transport Geography, Elsevier, vol. 41(C), pages 259-267.
    16. Cao, Xinyu (Jason), 2015. "Heterogeneous effects of neighborhood type on commute mode choice: An exploration of residential dissonance in the Twin Cities," Journal of Transport Geography, Elsevier, vol. 48(C), pages 188-196.
    17. Li, Jianling, 2018. "Residential and transit decisions: Insights from focus groups of neighborhoods around transit stations," Transport Policy, Elsevier, vol. 63(C), pages 1-9.
    18. Huang, Yu & Parker, Dawn & Minaker, Leia, 2021. "Identifying latent demand for transit-oriented development neighbourhoods: Evidence from a mid-sized urban area in Canada," Journal of Transport Geography, Elsevier, vol. 90(C).
    19. Xinyu Cao & Patricia L. Mokhtarian, 2012. "The connections among accessibility, self- selection and walking behaviour: a case study of Northern California residents," Chapters, in: Karst T. Geurs & Kevin J. Krizek & Aura Reggiani (ed.), Accessibility Analysis and Transport Planning, chapter 5, pages 73-95, Edward Elgar Publishing.
    20. De Vos, Jonas & Van Acker, Veronique & Witlox, Frank, 2014. "The influence of attitudes on Transit-Oriented Development: An explorative analysis," Transport Policy, Elsevier, vol. 35(C), pages 326-329.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:72:y:2018:i:c:p:166-177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.