[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/a/ags/aareaj/280227.html
   My bibliography  Save this article

Valuing seasonal climate forecasts in a state-contingent manner

Author

Listed:
  • Crean, Jason
  • Parton, Kevin
  • Mullen, John
  • Hayman, Peter
Abstract
We applied state-contingent theory to climate uncertainty at a farm level to assess the value of seasonal climate forecasts in the Central West region of NSW. We find that modelling uncertainty in a state-contingent manner results in a lower estimate of forecast value than the typical expected value approach. We attribute this finding to a more conservative long-term farm plan in the discrete stochastic programming (DSP) model, which is better balanced for climate uncertainty. Hence, a climate forecast, even though it still revises probabilities held by farmers, does not call forth such large changes in farm plans and associated farm incomes. We then use the DSP model to assess how attributes of a hypothetical forecasting system, particularly its skill and timeliness, as well as attributes of the decision environment, influence its value. Lastly, we assess the value of current operational forecast systems and show that the value derived from seasonal climate forecasts is relatively limited in the case study region largely because of low skill embodied in forecasts at the time when major farm decisions are being made.

Suggested Citation

  • Crean, Jason & Parton, Kevin & Mullen, John & Hayman, Peter, 2015. "Valuing seasonal climate forecasts in a state-contingent manner," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 59(1), January.
  • Handle: RePEc:ags:aareaj:280227
    DOI: 10.22004/ag.econ.280227
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/280227/files/ajar12041.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.280227?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. John Quiggin & Robert G. Chambers, 2006. "The state-contingent approach to production under uncertainty ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 50(2), pages 153-169, June.
    2. Ronald W. Hilton, 1981. "The Determinants of Information Value: Synthesizing Some General Results," Management Science, INFORMS, vol. 27(1), pages 57-64, January.
    3. Graham R. Marshall & Kevin A. Parton & G.L. Hammer, 1996. "Risk Attitude, Planting Conditions And The Value Of Seasonal Forecasts To A Dryland Wheat Grower," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 40(3), pages 211-233, December.
    4. Randall Jones & Oscar Cacho & Jack Sinden, 2006. "The importance of seasonal variability and tactical responses to risk on estimating the economic benefits of integrated weed management," Agricultural Economics, International Association of Agricultural Economists, vol. 35(3), pages 245-256, November.
    5. Johnson, Stanley R. & Holt, Matthew, 1997. "The Value of Weather Information (Chapter 3)," Staff General Research Papers Archive 1103, Iowa State University, Department of Economics.
    6. Petersen, E. H. & Fraser, R. W., 2001. "An assessment of the value of seasonal forecasting technology for Western Australian farmers," Agricultural Systems, Elsevier, vol. 70(1), pages 259-274, October.
    7. Chambers,Robert G. & Quiggin,John, 2000. "Uncertainty, Production, Choice, and Agency," Cambridge Books, Cambridge University Press, number 9780521622448.
    8. Crean, Jason & Parton, Kevin & Mullen, John & Jones, Randall, 2013. "Representing climatic uncertainty in agricultural models – an application of state-contingent theory," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 57(3).
    9. Jason Crean & Kevin Parton & John Mullen & Randall Jones, 2013. "Representing climatic uncertainty in agricultural models – an application of state-contingent theory," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 57(3), pages 359-378, July.
    10. Marshall, Graham R. & Parton, K.A., 1996. "Risk Attitude, Planting Conditions and the Value of Climate Forecasts to a Dryland Wheat Grower," 1996 Conference (40th), February 11-16, 1996, Melbourne, Australia 156433, Australian Agricultural and Resource Economics Society.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Steele C. West & Amin W. Mugera & Ross S. Kingwell, 2024. "The impact of repayment obligations arising as a by‐product of input use on partial inefficiency: Evidence from Western Australian farm businesses," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 68(3), pages 678-700, July.
    2. Darbyshire, Rebecca & Crean, Jason & Cashen, Michael & Anwar, Muhuddin Rajin & Broadfoot, Kim M & Simpson, Marja & Cobon, David H & Pudmenzky, Christa & Kouadio, Louis & Kodur, Shreevatsa, 2020. "Insights into the value of seasonal climate forecasts to agriculture," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(04), January.
    3. Rebecca Darbyshire & Jason Crean & Michael Cashen & Muhuddin Rajin Anwar & Kim M Broadfoot & Marja Simpson & David H Cobon & Christa Pudmenzky & Louis Kouadio & Shreevatsa Kodur, 2020. "Insights into the value of seasonal climate forecasts to agriculture," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(4), pages 1034-1058, October.
    4. Loch, Adam & Auricht , Christopher & Adamson, David & Mateo, Luis, 2020. "Markets, mis-direction and motives: A factual analysis of hoarding and speculation in southern Murray–Darling Basin water markets," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 65(02), January.
    5. Adam Loch & Christopher Auricht & David Adamson & Luis Mateo, 2021. "Markets, mis‐direction and motives: A factual analysis of hoarding and speculation in southern Murray–Darling Basin water markets," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 65(2), pages 291-317, April.
    6. Mitter, Hermine & Schmid, Erwin, 2019. "Computing the economic value of climate information for water stress management exemplified by crop production in Austria," Agricultural Water Management, Elsevier, vol. 221(C), pages 430-448.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carter, Chris & Crean, Jason & Kingwell, Ross S. & Hertzler, Greg, 2006. "Managing and Sharing the Risks of Drought in Australia," 2006 Annual Meeting, August 12-18, 2006, Queensland, Australia 25319, International Association of Agricultural Economists.
    2. Young, Michael & Young, John & Kingwell, Ross S. & Vercoe, Philip E., 2023. "Evaluation of the least cost option to manage pastures in a wet winter in south-eastern Australia," AFBM Journal, Australasian Farm Business Management Network, vol. 20(3), August.
    3. Messina, C. D. & Hansen, J. W. & Hall, A. J., 1999. "Land allocation conditioned on El Nino-Southern Oscillation phases in the Pampas of Argentina," Agricultural Systems, Elsevier, vol. 60(3), pages 197-212, June.
    4. Hammer, G. L. & Hansen, J. W. & Phillips, J. G. & Mjelde, J. W. & Hill, H. & Love, A. & Potgieter, A., 2001. "Advances in application of climate prediction in agriculture," Agricultural Systems, Elsevier, vol. 70(2-3), pages 515-553.
    5. Mallawaarachchi, Thilak & Auricht, Christopher & Loch, Adam & Adamson, David & Quiggin, John, 2020. "Water allocation in Australia’s Murray–Darling Basin: Managing change under heightened uncertainty," Economic Analysis and Policy, Elsevier, vol. 66(C), pages 345-369.
    6. Claire Settre & Jeff Connor & Sarah Ann Wheeler, 2017. "Reviewing the Treatment of Uncertainty in Hydro-economic Modeling of the Murray–Darling Basin, Australia," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 1-35, July.
    7. Nelson, R. A. & Holzworth, D. P. & Hammer, G. L. & Hayman, P. T., 2002. "Infusing the use of seasonal climate forecasting into crop management practice in North East Australia using discussion support software," Agricultural Systems, Elsevier, vol. 74(3), pages 393-414, December.
    8. Williams, John & Malcolm, Bill, 2012. "Farmer decisions about selling wheat and managing wheat price risk in Australia," Australasian Agribusiness Review, University of Melbourne, Department of Agriculture and Food Systems, vol. 20, pages 1-10.
    9. Jesse B. Tack & David Ubilava, 2015. "Climate and agricultural risk: measuring the effect of ENSO on U.S. crop insurance," Agricultural Economics, International Association of Agricultural Economists, vol. 46(2), pages 245-257, March.
    10. Macedo, Pedro & Scotto, Manuel, 2014. "Cross-entropy estimation in technical efficiency analysis," Journal of Mathematical Economics, Elsevier, vol. 54(C), pages 124-130.
    11. Adamson, David & Mallawaarachchi, Thilak & Quiggin, John C., 2007. "Water use and salinity in the Murray–Darling Basin: A state-contingent model," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 51(3), pages 1-19.
    12. Samson P. Katengeza & Stein T. Holden & Rodney W. Lunduka, 2019. "Adoption of Drought Tolerant Maize Varieties under Rainfall Stress in Malawi," Journal of Agricultural Economics, Wiley Blackwell, vol. 70(1), pages 198-214, February.
    13. Young, Michael & Young, John & Kingwell, Ross S. & Vercoe, Philip E., 2023. "Representing weather-year variation in whole-farm optimisation models: Four-stage single-sequence vs eight-stage multi-sequence," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 68(01), September.
    14. Shankar, Sriram, 2015. "Efficiency analysis under uncertainty: a simulation study," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 59(2), April.
    15. Graham R. Marshall & Kevin A. Parton & G.L. Hammer, 1996. "Risk Attitude, Planting Conditions And The Value Of Seasonal Forecasts To A Dryland Wheat Grower," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 40(3), pages 211-233, December.
    16. Tang, Kai, 2024. "Agricultural adaptation to the environmental and social consequences of climate change in mixed farming systems: Evidence from North Xinjiang, China," Agricultural Systems, Elsevier, vol. 217(C).
    17. Ying Zhang & Liangzhi You & Donghoon Lee & Paul Block, 2020. "Integrating climate prediction and regionalization into an agro-economic model to guide agricultural planning," Climatic Change, Springer, vol. 158(3), pages 435-451, February.
    18. McFadden, Brandon R. & Lusk, Jayson L., 2015. "Cognitive biases in the assimilation of scientific information on global warming and genetically modified food," Food Policy, Elsevier, vol. 54(C), pages 35-43.
    19. Pedro Macedo & Elvira Silva & Manuel Scotto, 2014. "Technical efficiency with state-contingent production frontiers using maximum entropy estimators," Journal of Productivity Analysis, Springer, vol. 41(1), pages 131-140, February.
    20. Makate, Clifton & Angelsen, Arild & Holden, Stein Terje & Westengen, Ola Tveitereid, 2023. "Evolution of farm-level crop diversification and response to rainfall shocks in smallholder farming: Evidence from Malawi and Tanzania," Ecological Economics, Elsevier, vol. 205(C).

    More about this item

    Keywords

    Risk and Uncertainty;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aareaj:280227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaresea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.