[go: up one dir, main page]

IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/13823.html
   My bibliography  Save this paper

The Origins of Industrial Scientific Discoveries

Author

Listed:
  • James D. Adams
  • J. Roger Clemmons
Abstract
This paper estimates science production functions for R&D-performing firms in the United States using scientific papers as the measure of output, by analogy with patents. The underlying evidence covers 200 top U.S. R&D firms during 1981-1999 as well as 110 top U.S. universities. We find that industrial science builds on past scientific research inside and outside the firm, with most of the returns to scale in production deriving from outside knowledge. In turn, the largest outside contribution derives from universities rather than firms; this is especially true when papers are weighted by citations received, a measure of their importance. Consistent with the role assigned to knowledge spillovers in growth theory, the importance of outside knowledge, especially that of universities, increases from the firm to the industry level. The findings survive the inclusion of fixed effects, interactions among the effects, variations in sample and specification, and efforts to control for endogeneity.

Suggested Citation

  • James D. Adams & J. Roger Clemmons, 2008. "The Origins of Industrial Scientific Discoveries," NBER Working Papers 13823, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:13823
    Note: PR
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w13823.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wolfgang Keller, 2004. "International Technology Diffusion," Journal of Economic Literature, American Economic Association, vol. 42(3), pages 752-782, September.
    2. Hausman, Jerry & Hall, Bronwyn H & Griliches, Zvi, 1984. "Econometric Models for Count Data with an Application to the Patents-R&D Relationship," Econometrica, Econometric Society, vol. 52(4), pages 909-938, July.
    3. James D. Adams & Adam B. Jaffe, 1996. "Bounding the Effects of R&D: An Investigation Using Matched Establishment-Firm Data," RAND Journal of Economics, The RAND Corporation, vol. 27(4), pages 700-721, Winter.
    4. Zvi Griliches, 1998. "Issues in Assessing the Contribution of Research and Development to Productivity Growth," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 17-45, National Bureau of Economic Research, Inc.
    5. Scott Stern, 2004. "Do Scientists Pay to Be Scientists?," Management Science, INFORMS, vol. 50(6), pages 835-853, June.
    6. Adams, James D, 1990. "Fundamental Stocks of Knowledge and Productivity Growth," Journal of Political Economy, University of Chicago Press, vol. 98(4), pages 673-702, August.
    7. Richard Nelson, 1962. "The Link Between Science and Invention: The Case of the Transistor," NBER Chapters, in: The Rate and Direction of Inventive Activity: Economic and Social Factors, pages 549-584, National Bureau of Economic Research, Inc.
    8. Jaffe, Adam B, 1986. "Technological Opportunity and Spillovers of R&D: Evidence from Firms' Patents, Profits, and Market Value," American Economic Review, American Economic Association, vol. 76(5), pages 984-1001, December.
    9. James D. Adams, 2002. "Comparative localization of academic and industrial spillovers," Journal of Economic Geography, Oxford University Press, vol. 2(3), pages 253-278, July.
    10. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    11. Wolfgang Keller, 2002. "Geographic Localization of International Technology Diffusion," American Economic Review, American Economic Association, vol. 92(1), pages 120-142, March.
    12. Cameron,A. Colin & Trivedi,Pravin K., 2005. "Microeconometrics," Cambridge Books, Cambridge University Press, number 9780521848053, September.
    13. Lee Branstetter & Yoshiaki Ogura, 2005. "Is Academic Science Driving a Surge in Industrial Innovation? Evidence from Patent Citations," NBER Working Papers 11561, National Bureau of Economic Research, Inc.
    14. Giovanni Peri, 2005. "Determinants of Knowledge Flows and Their Effect on Innovation," The Review of Economics and Statistics, MIT Press, vol. 87(2), pages 308-322, May.
    15. Adam Jaffe & Manuel Trajtenberg, 1999. "International Knowledge Flows: Evidence From Patent Citations," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 8(1-2), pages 105-136.
    16. James Adams & J. Roger Clemmons, 2008. "Science And Industry: Tracing The Flow Of Basic Research Through Manufacturing And Trade," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 17(5), pages 473-495.
    17. Klevorick, Alvin K. & Levin, Richard C. & Nelson, Richard R. & Winter, Sidney G., 1995. "On the sources and significance of interindustry differences in technological opportunities," Research Policy, Elsevier, vol. 24(2), pages 185-205, March.
    18. Tor Jakob Klette & Samuel Kortum, 2004. "Innovating Firms and Aggregate Innovation," Journal of Political Economy, University of Chicago Press, vol. 112(5), pages 986-1018, October.
    19. Peter Howitt, 2000. "Endogenous Growth and Cross-Country Income Differences," American Economic Review, American Economic Association, vol. 90(4), pages 829-846, September.
    20. Naomi R. Lamoreaux & Daniel M. G. Raff, 1995. "Coordination and Information: Historical Perspectives on the Organization of Enterprise," NBER Books, National Bureau of Economic Research, Inc, number lamo95-1.
    21. Cohen, Wesley M & Levinthal, Daniel A, 1989. "Innovation and Learning: The Two Faces of R&D," Economic Journal, Royal Economic Society, vol. 99(397), pages 569-596, September.
    22. Samuel S. Kortum, 1997. "Research, Patenting, and Technological Change," Econometrica, Econometric Society, vol. 65(6), pages 1389-1420, November.
    23. Adams, James D. & Black, Grant C. & Clemmons, J. Roger & Stephan, Paula E., 2005. "Scientific teams and institutional collaborations: Evidence from U.S. universities, 1981-1999," Research Policy, Elsevier, vol. 34(3), pages 259-285, April.
    24. Jones, Charles I, 1995. "R&D-Based Models of Economic Growth," Journal of Political Economy, University of Chicago Press, vol. 103(4), pages 759-784, August.
    25. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Goodall, Amanda H., 2009. "Highly cited leaders and the performance of research universities," Research Policy, Elsevier, vol. 38(7), pages 1079-1092, September.
    2. Shahid Yusuf & Kaoru Nabeshima, 2009. "Growth through Innovation : An Industrial Strategy for Shanghai," World Bank Publications - Reports 18613, The World Bank Group.
    3. Scherer, F.M., 2010. "Pharmaceutical Innovation," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 539-574, Elsevier.
    4. Pellens, Maikel & Della Malva, Antonio, 2016. "Changing of the guard: Structural change and corporate science in the semiconductor industry," ZEW Discussion Papers 16-050, ZEW - Leibniz Centre for European Economic Research.
    5. Kim, Yee Kyoung & Lee, Keun & Park, Walter G. & Choo, Kineung, 2012. "Appropriate intellectual property protection and economic growth in countries at different levels of development," Research Policy, Elsevier, vol. 41(2), pages 358-375.
    6. Bhattacharya, Jay & Packalen, Mikko, 2011. "Opportunities and benefits as determinants of the direction of scientific research," Journal of Health Economics, Elsevier, vol. 30(4), pages 603-615, July.
    7. repec:wip:wpaper:6 is not listed on IDEAS
    8. Simeth, Markus & Raffo, Julio D., 2013. "What makes companies pursue an Open Science strategy?," Research Policy, Elsevier, vol. 42(9), pages 1531-1543.
    9. Simeth, Markus & Lhuillery, Stephane, 2015. "How do firms develop capabilities for scientific disclosure?," Research Policy, Elsevier, vol. 44(7), pages 1283-1295.
    10. King, John L. & Toole, Andrew A. & Fuglie, Keith O., 2012. "The Complementary Roles of the Public and Private Sectors in U.S. Agricultural Research and Development," Economic Brief 138925, United States Department of Agriculture, Economic Research Service.
    11. Jürgen Janger & Agnes Kügler & Andreas Reinstaller & Peter Reschenhofer & Fabian Unterlass, 2017. "Austria 2025 – A New Strategic Innovation Policy Framework. Addressing Structural Change and Upgrading," WIFO Studies, WIFO, number 59290, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sergey Lychagin & Joris Pinkse & Margaret E. Slade & John Van Reenen, 2016. "Spillovers in Space: Does Geography Matter?," Journal of Industrial Economics, Wiley Blackwell, vol. 64(2), pages 295-335, June.
    2. Gong, Guan & Keller, Wolfgang, 2003. "Convergence and polarization in global income levels: a review of recent results on the role of international technology diffusion," Research Policy, Elsevier, vol. 32(6), pages 1055-1079, June.
    3. Aldieri, Luigi & Sena, Vania & Vinci, Concetto Paolo, 2018. "Domestic R&D spillovers and absorptive capacity: Some evidence for US, Europe and Japan," International Journal of Production Economics, Elsevier, vol. 198(C), pages 38-49.
    4. Hean, Oudom, 2018. "The Effect of Metropolitan Technological Progress on the Non-metropolitan Labor Market: Evidence from U.S. Patent Counts," 2018 Annual Meeting, August 5-7, Washington, D.C. 274176, Agricultural and Applied Economics Association.
    5. James Adams, 2006. "Learning, internal research, and spillovers," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 15(1), pages 5-36.
    6. Bettina Becker, 2013. "The Determinants of R&D Investment: A Survey of the Empirical Research," Discussion Paper Series 2013_09, Department of Economics, Loughborough University, revised Sep 2013.
    7. Stephan, Paula E., 2010. "The Economics of Science," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 217-273, Elsevier.
    8. Choi, Mincheol & Lee, Chang-Yang, 2021. "Technological diversification and R&D productivity: The moderating effects of knowledge spillovers and core-technology competence," Technovation, Elsevier, vol. 104(C).
    9. Cohen, Wesley M., 2010. "Fifty Years of Empirical Studies of Innovative Activity and Performance," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 129-213, Elsevier.
    10. T. Gries & R. Grundmann & I. Palnau & M. Redlin, 2017. "Innovations, growth and participation in advanced economies - a review of major concepts and findings," International Economics and Economic Policy, Springer, vol. 14(2), pages 293-351, April.
    11. Pedro de Faria & Francisco Lima, 2012. "Interdependence and spillovers: is firm performance affected by others’ innovation activities?," Applied Economics, Taylor & Francis Journals, vol. 44(36), pages 4765-4775, December.
    12. Gehringer, Agnieszka & Prettner, Klaus, 2019. "Longevity And Technological Change," Macroeconomic Dynamics, Cambridge University Press, vol. 23(4), pages 1471-1503, June.
    13. Capolupo, Rosa, 2009. "The New Growth Theories and Their Empirics after Twenty Years," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-72.
    14. Quatraro, Francesco & Scandura, Alessandra, 2019. "Academic Inventors and the Antecedents of Green Technologies. A Regional Analysis of Italian Patent Data," Ecological Economics, Elsevier, vol. 156(C), pages 247-263.
    15. Hall, Bronwyn H. & Mairesse, Jacques & Mohnen, Pierre, 2010. "Measuring the Returns to R&D," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 1033-1082, Elsevier.
    16. Yosuke Okada, 2005. "Competition and Productivity in Japanese Manufacturing Industries," NBER Working Papers 11540, National Bureau of Economic Research, Inc.
    17. Jakob Madsen, 2008. "Semi-endogenous versus Schumpeterian growth models: testing the knowledge production function using international data," Journal of Economic Growth, Springer, vol. 13(1), pages 1-26, March.
    18. Spyros Arvanitis & Florian Seliger & Martin Woerter, 2020. "Knowledge Spillovers, Competition and Innovation Success," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(5), pages 1017-1041, October.
    19. Okada, Yosuke, 2005. "Competition and productivity in Japanese manufacturing industries," Journal of the Japanese and International Economies, Elsevier, vol. 19(4), pages 586-616, December.
    20. Luh, Yir-Hueih & Jiang, Wun-Ji & Huang, Szu-Chi, 2016. "Trade-related spillovers and industrial competitiveness: Exploring the linkages for OECD countries," Economic Modelling, Elsevier, vol. 54(C), pages 309-325.

    More about this item

    JEL classification:

    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • L33 - Industrial Organization - - Nonprofit Organizations and Public Enterprise - - - Comparison of Public and Private Enterprise and Nonprofit Institutions; Privatization; Contracting Out
    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:13823. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.