[go: up one dir, main page]

Přeskočit na obsah

Součinová topologie

Z Wikipedie, otevřené encyklopedie

Součinová topologie je pojem z matematiky, konkrétněji z topologie.

Nechť jsou dva topologické prostory. Součinová topologie na kartézském součinu je systém otevřených množin generovaný všemi množinami , kde je otevřená množina v a definované , jsou (přirozené) projekce. Podobně se definuje součinová topologie na libovolném součinů topologických prostorů (i nespočetném).

Součinová topologie na a uvažovaných s metrickou topologií je shodná s metrickou topologií na .

1. Následující definice je ekvivalentní s definicí součinové topologie:

Součinová topologie je nejhrubší topologie na , že projekce jsou spojité pro .

2. Součinová toplogie splňuje univerzální vlastnost, tj. kategorie topologických prostorů je kategorií se součinem.

Součinovou topologii lze definovat pro větší počet kartézsky násobených topologických prostorů. Na takovémto součinu lze zavést více přirozených součinových topologií, které však s výše uvedenou nemusejí obecně splývat.