[go: up one dir, main page]

An Entity of Type: Rule105846932, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

The Gauss–Newton algorithm is used to solve non-linear least squares problems, which is equivalent to minimizing a sum of squared function values. It is an extension of Newton's method for finding a minimum of a non-linear function. Since a sum of squares must be nonnegative, the algorithm can be viewed as using Newton's method to iteratively approximate zeroes of the sum, and thus minimizing the sum. It has the advantage that second derivatives, which can be challenging to compute, are not required.

Property Value
dbo:abstract
  • A matemàtiques, l'algorisme de Gauss-Newton s'utilitza per a resoldre problemes no lineals de mínims quadrats. És una modificació del mètode d'optimització de Newton que no depèn de calcular segones derivades i es deu a Carl Friedrich Gauss. (ca)
  • خوارزمية غاوس ونيوتن (بالإنجليزية: Gauss–Newton algorithm)‏ خوارزمية مستخدمة في حل (بالإنجليزية: non-linear least squares problems)‏ وهي تعديل لإيجاد الحد الأدنى للدالة. على عكس طريقة نيوتن، خوارزمية غاوس ونيوتن يمكن استخدامها فقط لتقليل مجموع تربيع قيم الدوال، ولكن عندها ميزة أن المشتقة الثانية -والتي يمكن أن تكون صعبة للحساب- غير مطلوبة. سميت هذه الخوارمية باسم كلٍ من كارل فريدريش غاوس و إسحاق نيوتن. (ar)
  • Das Gauß-Newton-Verfahren (nach Carl Friedrich Gauß und Isaac Newton) ist ein numerisches Verfahren zur Lösung nichtlinearer Minimierungsprobleme nach der Methode der kleinsten Quadrate. Das Verfahren ist verwandt mit dem Newton-Verfahren zur Lösung nichtlinearer Optimierungsprobleme, hat jedoch den Vorteil, dass die für das Newton-Verfahren notwendige Berechnung der 2. Ableitung entfällt. Speziell für große Probleme mit mehreren zehntausend Parametern ist die Berechnung der 2. Ableitung oft ein limitierender Faktor. (de)
  • En matemáticas, el algoritmo de Gauss-Newton se utiliza para resolver problemas no lineales de mínimos cuadrados. Es una modificación del método de optimización de Newton que no usa segundas derivadas y se debe a Carl Friedrich Gauss. (es)
  • The Gauss–Newton algorithm is used to solve non-linear least squares problems, which is equivalent to minimizing a sum of squared function values. It is an extension of Newton's method for finding a minimum of a non-linear function. Since a sum of squares must be nonnegative, the algorithm can be viewed as using Newton's method to iteratively approximate zeroes of the sum, and thus minimizing the sum. It has the advantage that second derivatives, which can be challenging to compute, are not required. Non-linear least squares problems arise, for instance, in non-linear regression, where parameters in a model are sought such that the model is in good agreement with available observations. The method is named after the mathematicians Carl Friedrich Gauss and Isaac Newton, and first appeared in Gauss' 1809 work Theoria motus corporum coelestium in sectionibus conicis solem ambientum. (en)
  • En mathématiques, l'algorithme de Gauss-Newton est une méthode de résolution des problèmes de moindres carrés non linéaires. Elle peut être vue comme une modification de la méthode de Newton dans le cas multidimensionnel afin de trouver le minimum d'une fonction (à plusieurs variables). Mais l'algorithme de Gauss-Newton est totalement spécifique à la minimisation d'une somme de fonctions au carré et présente le grand avantage de ne pas nécessiter les dérivées secondes, parfois complexes à calculer. Les problèmes de moindres carrés non linéaires surviennent par exemple dans les problèmes de régressions non linéaires, où des paramètres du modèle sont recherchés afin de correspondre au mieux aux observations disponibles. Cette méthode est due à Carl Friedrich Gauss. (fr)
  • Di dalam ilmu matematika, algoritme Gauss-Newton digunakan untuk memecahkan masalah-masalah kuadrat terkecil. Algoritme ini merupakan sebuah modifikasi dari metode Newton untuk mengoptimalkan sebuah fungsi. Tidak seperti metode Newton, algoritme Gauss-Newton hanya bisa digunakan untuk mengoptimumkan jumlah dari nilai fungsi kuadrat. Metode ini merupakan hasil penemuan dari matematikawan bernama Carl Friedrich Gauss. (in)
  • L'algoritmo di Gauss–Newton è un metodo iterativo per risolvere problemi di minimi quadrati e regressioni non lineari. È una versione modificata del metodo di Newton per trovare un minimo di una funzione. Diversamente da quest'ultimo, l'algoritmo di Gauss–Newton può essere utilizzato solo per minimizzare una somma di funzioni al quadrato, ma possiede il vantaggio che le derivate seconde, spesso faticose da calcolare, non sono richieste. I problemi di minimi quadrati non lineari compaiono, ad esempio, nella regressione non lineare, in cui si cercano i parametri tali che il modello sia in buono accordo con le osservazioni disponibili. Il nome del metodo deriva dai matematici Carl Friedrich Gauss e Isaac Newton. (it)
  • ガウス・ニュートン法(ガウス・ニュートンほう、英: Gauss–Newton method)は、非線形最小二乗法を解く手法の一つである。これは関数の最大・最小値を見出すニュートン法の修正とみなすことができる。ニュートン法とは違い、ガウス・ニュートン法は二乗和の最小化にしか用いることができないが、計算するのが困難な2階微分が不要という長所がある。 非線形最小二乗法は非線形回帰などで、観測データを良く表すようにモデルのパラメータを調整するために必要となる。 この手法の名称はカール・フリードリヒ・ガウスとアイザック・ニュートンにちなむ。 (ja)
  • O algoritmo de Gauss-Newton é um método usado para resolver problemas de . Ele pode ser visto como uma modificação do Método de Newton para . Diferentemente do Método de Newton, o Algoritmo de Gauss-Newton apenas pode ser usado para minimizar uma soma dos valores quadrados da função, mas tem a vantagem de que as derivadas segundas, que podem ser difíceis de calcular, não são necessárias. Problemas de mínimos quadrados não lineares surgem, por exemplo, em regressão não linear, onde os parâmetros de um modelo são procurados de forma que o modelo esteja em concordância com as observações disponíveis. O método foi nomeado a partir dos matemáticos Carl Friedrich Gauss e Isaac Newton. (pt)
  • Алгоритм Гаусса — Ньютона используется для решения задач . Алгоритм является модификацией метода Ньютона для нахождения минимума функции. В отличие от метода Ньютона, алгоритм Гаусса — Ньютона может быть использован только для минимизации суммы квадратов, но его преимущество в том, что метод не требует вычисления вторых производных, что может оказаться существенной трудностью. Задачи, для которых применяется нелинейный метод наименьших квадратов, возникают, например, при нелинейной регрессии, в которой ищутся параметры модели, которые наиболее соответствуют наблюдаемым величинам. Метод назван именами математиков Карла Фридриха Гаусса и Исаака Ньютона. (ru)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 1164753 (xsd:integer)
dbo:wikiPageLength
  • 22148 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1124842256 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dct:subject
rdf:type
rdfs:comment
  • A matemàtiques, l'algorisme de Gauss-Newton s'utilitza per a resoldre problemes no lineals de mínims quadrats. És una modificació del mètode d'optimització de Newton que no depèn de calcular segones derivades i es deu a Carl Friedrich Gauss. (ca)
  • خوارزمية غاوس ونيوتن (بالإنجليزية: Gauss–Newton algorithm)‏ خوارزمية مستخدمة في حل (بالإنجليزية: non-linear least squares problems)‏ وهي تعديل لإيجاد الحد الأدنى للدالة. على عكس طريقة نيوتن، خوارزمية غاوس ونيوتن يمكن استخدامها فقط لتقليل مجموع تربيع قيم الدوال، ولكن عندها ميزة أن المشتقة الثانية -والتي يمكن أن تكون صعبة للحساب- غير مطلوبة. سميت هذه الخوارمية باسم كلٍ من كارل فريدريش غاوس و إسحاق نيوتن. (ar)
  • Das Gauß-Newton-Verfahren (nach Carl Friedrich Gauß und Isaac Newton) ist ein numerisches Verfahren zur Lösung nichtlinearer Minimierungsprobleme nach der Methode der kleinsten Quadrate. Das Verfahren ist verwandt mit dem Newton-Verfahren zur Lösung nichtlinearer Optimierungsprobleme, hat jedoch den Vorteil, dass die für das Newton-Verfahren notwendige Berechnung der 2. Ableitung entfällt. Speziell für große Probleme mit mehreren zehntausend Parametern ist die Berechnung der 2. Ableitung oft ein limitierender Faktor. (de)
  • En matemáticas, el algoritmo de Gauss-Newton se utiliza para resolver problemas no lineales de mínimos cuadrados. Es una modificación del método de optimización de Newton que no usa segundas derivadas y se debe a Carl Friedrich Gauss. (es)
  • Di dalam ilmu matematika, algoritme Gauss-Newton digunakan untuk memecahkan masalah-masalah kuadrat terkecil. Algoritme ini merupakan sebuah modifikasi dari metode Newton untuk mengoptimalkan sebuah fungsi. Tidak seperti metode Newton, algoritme Gauss-Newton hanya bisa digunakan untuk mengoptimumkan jumlah dari nilai fungsi kuadrat. Metode ini merupakan hasil penemuan dari matematikawan bernama Carl Friedrich Gauss. (in)
  • ガウス・ニュートン法(ガウス・ニュートンほう、英: Gauss–Newton method)は、非線形最小二乗法を解く手法の一つである。これは関数の最大・最小値を見出すニュートン法の修正とみなすことができる。ニュートン法とは違い、ガウス・ニュートン法は二乗和の最小化にしか用いることができないが、計算するのが困難な2階微分が不要という長所がある。 非線形最小二乗法は非線形回帰などで、観測データを良く表すようにモデルのパラメータを調整するために必要となる。 この手法の名称はカール・フリードリヒ・ガウスとアイザック・ニュートンにちなむ。 (ja)
  • The Gauss–Newton algorithm is used to solve non-linear least squares problems, which is equivalent to minimizing a sum of squared function values. It is an extension of Newton's method for finding a minimum of a non-linear function. Since a sum of squares must be nonnegative, the algorithm can be viewed as using Newton's method to iteratively approximate zeroes of the sum, and thus minimizing the sum. It has the advantage that second derivatives, which can be challenging to compute, are not required. (en)
  • En mathématiques, l'algorithme de Gauss-Newton est une méthode de résolution des problèmes de moindres carrés non linéaires. Elle peut être vue comme une modification de la méthode de Newton dans le cas multidimensionnel afin de trouver le minimum d'une fonction (à plusieurs variables). Mais l'algorithme de Gauss-Newton est totalement spécifique à la minimisation d'une somme de fonctions au carré et présente le grand avantage de ne pas nécessiter les dérivées secondes, parfois complexes à calculer. Cette méthode est due à Carl Friedrich Gauss. (fr)
  • L'algoritmo di Gauss–Newton è un metodo iterativo per risolvere problemi di minimi quadrati e regressioni non lineari. È una versione modificata del metodo di Newton per trovare un minimo di una funzione. Diversamente da quest'ultimo, l'algoritmo di Gauss–Newton può essere utilizzato solo per minimizzare una somma di funzioni al quadrato, ma possiede il vantaggio che le derivate seconde, spesso faticose da calcolare, non sono richieste. Il nome del metodo deriva dai matematici Carl Friedrich Gauss e Isaac Newton. (it)
  • O algoritmo de Gauss-Newton é um método usado para resolver problemas de . Ele pode ser visto como uma modificação do Método de Newton para . Diferentemente do Método de Newton, o Algoritmo de Gauss-Newton apenas pode ser usado para minimizar uma soma dos valores quadrados da função, mas tem a vantagem de que as derivadas segundas, que podem ser difíceis de calcular, não são necessárias. O método foi nomeado a partir dos matemáticos Carl Friedrich Gauss e Isaac Newton. (pt)
  • Алгоритм Гаусса — Ньютона используется для решения задач . Алгоритм является модификацией метода Ньютона для нахождения минимума функции. В отличие от метода Ньютона, алгоритм Гаусса — Ньютона может быть использован только для минимизации суммы квадратов, но его преимущество в том, что метод не требует вычисления вторых производных, что может оказаться существенной трудностью. Задачи, для которых применяется нелинейный метод наименьших квадратов, возникают, например, при нелинейной регрессии, в которой ищутся параметры модели, которые наиболее соответствуют наблюдаемым величинам. (ru)
rdfs:label
  • خوارزمية جاوس ونيوتن (ar)
  • Algorisme de Gauss-Newton (ca)
  • Gauß-Newton-Verfahren (de)
  • Algoritmo de Gauss-Newton (es)
  • Algoritma Gauss-Newton (in)
  • Gauss–Newton algorithm (en)
  • Algoritmo di Gauss-Newton (it)
  • Algorithme de Gauss-Newton (fr)
  • ガウス・ニュートン法 (ja)
  • Algoritmo de Gauss-Newton (pt)
  • Алгоритм Гаусса — Ньютона (ru)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License