[go: up one dir, main page]

An Entity of Type: Rule105846932, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In numerical analysis, an iterative method is called locally convergent if the successive approximations produced by the method are guaranteed to converge to a solution when the initial approximation is already close enough to the solution. Iterative methods for nonlinear equations and their systems, such as Newton's method are usually only locally convergent. An iterative method that converges for an arbitrary initial approximation is called globally convergent. Iterative methods for systems of linear equations are usually globally convergent. * v * t * e

Property Value
dbo:abstract
  • In numerical analysis, an iterative method is called locally convergent if the successive approximations produced by the method are guaranteed to converge to a solution when the initial approximation is already close enough to the solution. Iterative methods for nonlinear equations and their systems, such as Newton's method are usually only locally convergent. An iterative method that converges for an arbitrary initial approximation is called globally convergent. Iterative methods for systems of linear equations are usually globally convergent. * v * t * e (en)
  • 局所収束性(きょくしょしゅうそくせい、英語: locally convergent、局所的収束性)は、数値解析において初期点が最適解に十分に近いときに最適解に十分に収束することが保証された反復法である。ニュートン法のようなおよび非線形方程式系で使用される反復法は一般的に局所収束性だけを満たす。 任意の初期点に対して収束する反復法は大域収束性、大域的収束性に分類される。線型方程式系で使用される反復法は一般的に大域収束性を満たす。 (ja)
dbo:wikiPageID
  • 16344093 (xsd:integer)
dbo:wikiPageLength
  • 748 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 865949636 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
rdf:type
rdfs:comment
  • In numerical analysis, an iterative method is called locally convergent if the successive approximations produced by the method are guaranteed to converge to a solution when the initial approximation is already close enough to the solution. Iterative methods for nonlinear equations and their systems, such as Newton's method are usually only locally convergent. An iterative method that converges for an arbitrary initial approximation is called globally convergent. Iterative methods for systems of linear equations are usually globally convergent. * v * t * e (en)
  • 局所収束性(きょくしょしゅうそくせい、英語: locally convergent、局所的収束性)は、数値解析において初期点が最適解に十分に近いときに最適解に十分に収束することが保証された反復法である。ニュートン法のようなおよび非線形方程式系で使用される反復法は一般的に局所収束性だけを満たす。 任意の初期点に対して収束する反復法は大域収束性、大域的収束性に分類される。線型方程式系で使用される反復法は一般的に大域収束性を満たす。 (ja)
rdfs:label
  • Local convergence (en)
  • 局所収束性 (ja)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License