dbo:abstract
|
- In numerical analysis, an iterative method is called locally convergent if the successive approximations produced by the method are guaranteed to converge to a solution when the initial approximation is already close enough to the solution. Iterative methods for nonlinear equations and their systems, such as Newton's method are usually only locally convergent. An iterative method that converges for an arbitrary initial approximation is called globally convergent. Iterative methods for systems of linear equations are usually globally convergent.
* v
* t
* e (en)
- 局所収束性(きょくしょしゅうそくせい、英語: locally convergent、局所的収束性)は、数値解析において初期点が最適解に十分に近いときに最適解に十分に収束することが保証された反復法である。ニュートン法のようなおよび非線形方程式系で使用される反復法は一般的に局所収束性だけを満たす。 任意の初期点に対して収束する反復法は大域収束性、大域的収束性に分類される。線型方程式系で使用される反復法は一般的に大域収束性を満たす。 (ja)
|
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 748 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dcterms:subject
| |
rdf:type
| |
rdfs:comment
|
- In numerical analysis, an iterative method is called locally convergent if the successive approximations produced by the method are guaranteed to converge to a solution when the initial approximation is already close enough to the solution. Iterative methods for nonlinear equations and their systems, such as Newton's method are usually only locally convergent. An iterative method that converges for an arbitrary initial approximation is called globally convergent. Iterative methods for systems of linear equations are usually globally convergent.
* v
* t
* e (en)
- 局所収束性(きょくしょしゅうそくせい、英語: locally convergent、局所的収束性)は、数値解析において初期点が最適解に十分に近いときに最適解に十分に収束することが保証された反復法である。ニュートン法のようなおよび非線形方程式系で使用される反復法は一般的に局所収束性だけを満たす。 任意の初期点に対して収束する反復法は大域収束性、大域的収束性に分類される。線型方程式系で使用される反復法は一般的に大域収束性を満たす。 (ja)
|
rdfs:label
|
- Local convergence (en)
- 局所収束性 (ja)
|
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |