[go: up one dir, main page]

Jump to content

Numri e

Nga Wikipedia, enciklopedia e lirë

Numri e së bashku me numrat , , dhe njësinë imagjinare është njëra prej konstantave më të rëndësishme në matematikë. Numri e është numri i vetëm real i tillë që funksioni ex gjatë derivimit të tij nuk ndryshon. Funksioni quhet funksion eksponencial dhe funksioni invers i tij është funksion logaritmik i cili për bazë e ka pikërisht numrin e. Numri e quhet edhe numër i Eulerit ose i Neperit.

Pasi e është numër transhendent dhe irracional vlera e tij nuk mund të jepet në formë të një numri dhjetor të fundëm por ai është një numër dhjetor i pafundëm dhe joperiodik vlera e tij me 20 shifra pas presjes është:

2.71828 18284 59045 23536….

Konstanta e për herë të parë u shfaq në vitin 1618 në punimet në lidhje me logaritmet të matematikanit skocez John Napier jo si konstantë e izoluar, por vetëm si bazë e logaritmeve. Zbulimi i atribuohet matematikanit zviceran Jacob Bernoulli, i cili u përpoq të gjejë limitin e vargut:

vlera e të cilit në fakt është numri e (shënimi me këtë germë është dhënë nga matematikani Leonhard Euler në vitin 1727).

Paraqitja e numrit e

[Redakto | Redakto nëpërmjet kodit]

Numri e shfaqet në mënyra të ndryshme edhe atë si seri e pafundme, prodhim i pafundëm, thyesë e vazhdueshme, ose si limit i një vargu të pafundëm paraqitje kjo e cila është edhe kryesorja dhe merret si përkufizuesja e numrit në kurset fillestare të analizës matematike

Për llogaritjen e vlerës së tij me saktësi të dëshiruar më e përshtatshme është seria e pafundme

e cila konvergjon shumë shpejt.

Një paraqitje si thyesë e pafundme e vazhdueshme është kjo:

Numri e dhe numrat kompleks

[Redakto | Redakto nëpërmjet kodit]

Funksioni eksponencial ex si seri e Taylorit jepet me

nga ky barazim nëse në vend të x zëvendësojmë ix. dhe nëse kemi parasysh zhvillimin në seri të Taylorit për Funksionet trigonometrike sin x dhe cos x atëherë e fitojmë formulën e Eulerit:

nga e cila për x = π fitohet identiteti i Eulerit:

Ngjajshëm,

prej ku rrjedh se

Për më tepër sipas vetive të fuqive

ky barazim njihet si Formula e de Moivreit.

Lidhje të jashtme

[Redakto | Redakto nëpërmjet kodit]