[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a361092 -id:a361092
     Sort: relevance | references | number | modified | created      Format: long | short | data
E.g.f. satisfies A(x) = exp( x/(1 - x/A(x)) ).
+10
4
1, 1, 3, 7, -11, -239, -179, 24991, 192025, -3955391, -89483399, 552615031, 46231717621, 254468241457, -26683006147979, -571848064714289, 14926049610344881, 825004339886219521, -2973711136010539535, -1134313888244827421465, -17734152216328857754739
OFFSET
0,3
LINKS
FORMULA
a(n) = n! * Sum_{k=1..n} (-n+k+1)^(k-1) * binomial(n-1,n-k)/k! for n>0.
PROG
(PARI) a(n) = if(n==0, 1, n!*sum(k=1, n, (-n+k+1)^(k-1)*binomial(n-1, n-k)/k!));
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Mar 01 2023
STATUS
approved
E.g.f. satisfies A(x) = exp( x/(1 - x/A(x)^2) ).
+10
4
1, 1, 3, 1, -71, -19, 10051, 12349, -3185391, -9346247, 1797304771, 9717361721, -1582301193527, -13722004186331, 2000705907453891, 25552516703201461, -3432004488804778079, -60960914621687232271, 7660860906885122096515
OFFSET
0,3
LINKS
FORMULA
a(n) = n! * Sum_{k=0..n} (-2*n+2*k+1)^(k-1) * binomial(n-1,n-k)/k!.
PROG
(PARI) a(n) = n!*sum(k=0, n, (-2*n+2*k+1)^(k-1)*binomial(n-1, n-k)/k!);
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Mar 01 2023
STATUS
approved
E.g.f. satisfies A(x) = exp(x * (1 + x/A(x)^3)).
+10
2
1, 1, 3, -11, -11, 1341, -14339, -168923, 8905065, -85313735, -4604578919, 197455645641, -273728455571, -267002430142187, 9427821270512373, 178475402982086701, -28273343910563670959, 713736314833387866225, 51907546734507018043057
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: exp( x + LambertW(3*x^2*exp(-3*x))/3 ).
a(n) = n! * Sum_{k=0..n} (-3*n+3*k+1)^(k-1) * binomial(k,n-k)/k!.
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x+lambertw(3*x^2*exp(-3*x))/3)))
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Aug 17 2023
STATUS
approved

Search completed in 0.007 seconds