[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361067
E.g.f. satisfies A(x) = exp( x/((1-x) * A(x)) ).
7
1, 1, 1, 4, 9, 76, 175, 3606, 833, 354376, -1605249, 65111410, -718371071, 20105327100, -351241054177, 9362931464446, -214514949732735, 6039303900168976, -165679758877120001, 5093296357218337386, -159900268661169533119, 5405435526807425433220
OFFSET
0,4
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
a(n) = n! * Sum_{k=0..n} (-k+1)^(k-1) * binomial(n-1,n-k)/k!.
E.g.f.: exp( LambertW(x/(1-x)) ).
E.g.f.: 1 / ( (1-x)/x * LambertW(x/(1-x)) ).
a(n) ~ -(-1)^n * exp(-1) * (1 - exp(-1))^(n + 1/2) * n^(n-1). - Vaclav Kotesovec, Mar 02 2023
MATHEMATICA
nmax = 21; A[_] = 1;
Do[A[x_] = Exp[x/((1 - x)*A[x])] + O[x]^(nmax+1) // Normal, {nmax}];
CoefficientList[A[x], x]*Range[0, nmax]! (* Jean-François Alcover, Mar 04 2024 *)
PROG
(PARI) a(n) = n!*sum(k=0, n, (-k+1)^(k-1)*binomial(n-1, n-k)/k!);
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(lambertw(x/(1-x)))))
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(1/((1-x)/x*lambertw(x/(1-x)))))
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Mar 01 2023
STATUS
approved