[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A161630
E.g.f. satisfies: A(x) = exp( x/(1 - x*A(x)) ).
16
1, 1, 3, 19, 181, 2321, 37501, 731935, 16758393, 440525377, 13077834841, 432796650551, 15799794395749, 630773263606513, 27339525297079269, 1278550150117141231, 64171287394646697841, 3440711053857464325377
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} n! * (n-k+1)^(k-1)/k! * C(n-1,n-k).
Let A(x)^m = Sum_{n>=0} a(n,m)*x^n/n!, then
a(n,m) = Sum_{k=0..n} n! * m*(n-k+m)^(k-1)/k! * C(n-1,n-k).
E.g.f. satisfies: A(x) = exp(x) * A(x)^(x*A(x)). - Paul D. Hanna, Aug 02 2013
a(n) ~ n^(n-1) * (1+2*c)^(n+1/2) / (sqrt(1+c) * 2^(2*n+2) * exp(n) * c^(2*n+3/2)), where c = LambertW(1/2) = 0.351733711249195826... (see A202356). - Vaclav Kotesovec, Jan 10 2014
EXAMPLE
E.g.f: A(x) = 1 + x + 3*x^2/2! + 19*x^3/3! + 181*x^4/4! + 2321*x^5/5! +...
log(A(x))/x = 1 + x*A(x) + x^2*A(x)^2 + x^3*A(x)^3 + x^4*A(x)^4 +...
MATHEMATICA
Table[Sum[n! * (n-k+1)^(k-1)/k! * Binomial[n-1, n-k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jan 10 2014 *)
PROG
(PARI) {a(n, m=1)=if(n==0, 1, sum(k=0, n, n!/k!*m*(n-k+m)^(k-1)*binomial(n-1, n-k)))}
(PARI) {a(n, m=1)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(x/(1-x*A))); n!*polcoeff(A^m, n)}
CROSSREFS
Cf. A161633 (e.g.f. = log(A(x))/x).
Sequence in context: A306576 A303064 A343672 * A371320 A121083 A343685
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 17 2009
STATUS
approved