[go: up one dir, main page]

login
Search: a357172 -id:a357172
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) is the number of divisors of n whose digits are in strictly increasing order (A009993).
+10
3
1, 2, 2, 3, 2, 4, 2, 4, 3, 3, 1, 6, 2, 4, 4, 5, 2, 6, 2, 4, 3, 2, 2, 8, 3, 4, 4, 6, 2, 6, 1, 5, 2, 4, 4, 9, 2, 4, 4, 5, 1, 6, 1, 3, 6, 4, 2, 10, 3, 4, 3, 5, 1, 7, 2, 8, 4, 4, 2, 8, 1, 2, 4, 5, 3, 4, 2, 6, 4, 6, 1, 11, 1, 3, 5, 5, 2, 8, 2, 6, 4, 2, 1, 9, 3, 2, 3, 4, 2, 9, 3, 5, 2, 3, 3, 10, 1, 5, 3, 5
OFFSET
1,2
COMMENTS
As A009993 is finite with 512 terms, a(n) is bounded with a(n) <= 511 and not 512, since A009993(1) = 0.
FORMULA
G.f.: Sum_{n in A009993} x^n/(1-x^n). - Robert Israel, Sep 16 2022
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{n=2..512} 1/A009993(n) = 4.47614714667538759358... (this is a rational number whose numerator and denominator have 1037 and 1036 digits, respectively). - Amiram Eldar, Jan 06 2024
EXAMPLE
22 has 4 divisors {1, 2, 11, 22} of which two have decimal digits that are not in strictly increasing order: {11, 22}, hence a(22) = 4-2 = 2.
52 has divisors {1, 2, 4, 13, 26, 52} and a(52) = 5 of them have decimal digits that are in strictly increasing order (all except 52 itself).
MAPLE
f:= proc(n) local d, L, i, t;
t:= 0;
for d in numtheory:-divisors(n) do
L:= convert(d, base, 10);
if `and`(seq(L[i]>L[i+1], i=1..nops(L)-1)) then t:= t+1 fi
od;
t
end proc:
map(f, [$1..100]); # Robert Israel, Sep 16 2022
MATHEMATICA
a[n_] := DivisorSum[n, 1 &, Less @@ IntegerDigits[#] &]; Array[a, 100] (* Amiram Eldar, Sep 16 2022 *)
PROG
(PARI) isok(d) = Set(d=digits(d)) == d; \\ A009993
a(n) = sumdiv(n, d, isok(d)); \\ Michel Marcus, Sep 16 2022
(Python)
from sympy import divisors
def c(n): s = str(n); return s == "".join(sorted(set(s)))
def a(n): return sum(1 for d in divisors(n, generator=True) if c(d))
print([a(n) for n in range(1, 101)]) # Michael S. Branicky, Sep 16 2022
CROSSREFS
Similar: A087990 (palindromic), A355302 (undulating), A355593 (alternating).
KEYWORD
nonn,base
AUTHOR
Bernard Schott, Sep 16 2022
STATUS
approved
Positions of records in A357171, i.e., integers whose number of divisors whose decimal digits are in strictly increasing order sets a new record.
+10
3
1, 2, 4, 6, 12, 24, 36, 48, 72, 144, 336, 468, 504, 936, 1008, 1512, 2520, 3024, 5040, 6552, 7560, 13104, 19656, 39312, 78624, 98280, 196560, 393120, 668304, 1244880, 1670760, 1867320, 3341520, 3734640, 7469280, 22407840, 26142480, 31744440, 52284960, 63488880
OFFSET
1,2
COMMENTS
As A009993 is finite, this sequence is necessarily finite.
Corresponding records are 1, 2, 3, 4, 6, 8, 9, 10, 11, ...
EXAMPLE
a(6) = 24 is in the sequence because A357171(24) = 8 is larger than any earlier value in A357171.
MATHEMATICA
s[n_] := DivisorSum[n, 1 &, Less @@ IntegerDigits[#] &]; seq = {}; sm = 0; Do[If[(sn = s[n]) > sm, sm = sn; AppendTo[seq, n]], {n, 1, 10^4}]; seq (* Amiram Eldar, Sep 17 2022 *)
PROG
(PARI) isok(d) = Set(d=digits(d)) == d; \\ A009993
f(n) = sumdiv(n, d, isok(d)); \\ A357171
lista(nn) = my(r=0, list = List()); for (k=1, nn, my(m=f(k)); if (m>r, listput(list, k); r = m); ); Vec(list); \\ Michel Marcus, Sep 18 2022
CROSSREFS
Similar sequences: A093036, A340548, A355595.
KEYWORD
nonn,base,fini
AUTHOR
Bernard Schott, Sep 17 2022
EXTENSIONS
More terms from Amiram Eldar, Sep 17 2022
STATUS
approved
a(n) is the smallest integer that has exactly n divisors whose decimal digits are in strictly decreasing order.
+10
2
1, 2, 4, 6, 12, 20, 30, 40, 80, 60, 252, 120, 240, 540, 360, 630, 420, 960, 1440, 840, 1260, 2880, 3360, 4320, 2520, 6720, 5040, 8640, 10080, 15120, 50400, 20160, 40320, 30240, 171360, 90720, 383040, 60480, 120960, 181440, 362880, 544320, 937440, 786240, 2056320
OFFSET
1,2
COMMENTS
This sequence is finite since A009995 is finite with 1022 nonzero terms, hence the last term is a(1022) = lcm of the 1022 positive terms of A009995.
EXAMPLE
For n=7, the divisors of 30 are {1, 2, 3, 5, 6, 10, 15, 30} of which 7 have their decimal digits in strictly decreasing order (all except 15). No integer < 30 has 7 such divisors, so a(7) = 30.
MATHEMATICA
s[n_] := DivisorSum[n, 1 &, Greater @@ IntegerDigits[#] &]; seq[len_, nmax_] := Module[{v = Table[0, {len}], n = 1, c = 0, i}, While[c < len && n < nmax, i = s[n]; If[i <= len && v[[i]] == 0, v[[i]] = n; c++]; n++]; v]; seq[45, 3*10^6] (* Amiram Eldar, Nov 01 2022 *)
PROG
(PARI) f(n) = sumdiv(n, d, my(dd=digits(d)); vecsort(dd, , 12) == dd); \\ A358099
a(n) = my(k=1); while(f(k)!=n, k++); k; \\ Michel Marcus, Nov 01 2022
CROSSREFS
Similar: A087997 (palindromic), A355303 (undulating), A357172 (increasing order).
KEYWORD
nonn,base,fini
AUTHOR
Bernard Schott, Nov 01 2022
EXTENSIONS
More terms from Amiram Eldar, Nov 01 2022
STATUS
approved

Search completed in 0.005 seconds