[go: up one dir, main page]

login
A009993
Numbers whose decimal digits are in strictly increasing order.
18
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 18, 19, 23, 24, 25, 26, 27, 28, 29, 34, 35, 36, 37, 38, 39, 45, 46, 47, 48, 49, 56, 57, 58, 59, 67, 68, 69, 78, 79, 89, 123, 124, 125, 126, 127, 128, 129, 134, 135, 136, 137, 138, 139, 145, 146, 147, 148, 149, 156, 157
OFFSET
1,3
COMMENTS
Sequence has 512 terms, since every term except 0 corresponds to a nonempty subset of {1,2,3,4,5,6,7,8,9}.
A178788(a(n)) = 1. - Reinhard Zumkeller, Jun 30 2010
Number of terms in [10^(n-1), 10^n): 0, 9, 36, 84, 126, 126, 84, 36, 9, 1. - Robert G. Wilson v, Jul 20 2014
LINKS
Zak Seidov, Table of n, a(n) for n = 1..512 (full sequence)
Eric Weisstein's World of Mathematics, Digit
MATHEMATICA
Flatten@Table[FromDigits/@Subsets[Range[1, 9], {n}], {n, 0, 9}] (* Zak Seidov, May 19 2006 *)
PROG
(PARI) is_A009993(n)=Set(n=digits(n))==n \\ M. F. Hasler, Dec 11 2019
(PARI) forsubset(9, s, print1(fromdigits(Vec(s))", ")) \\ M. F. Hasler, Dec 11 2019
(Python)
from itertools import combinations
def afull(): return [0] + sorted(int("".join(c)) for d in range(1, 10) for c in combinations("123456789", d))
print(afull()) # Michael S. Branicky, Sep 16 2022
CROSSREFS
Cf. A009995.
Sequence in context: A032881 A239216 A032848 * A190218 A055569 A351119
KEYWORD
nonn,fini,full,base
STATUS
approved