[go: up one dir, main page]

login
A009995
Numbers with digits in strictly decreasing order. From the Macaulay expansion of n.
25
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 21, 30, 31, 32, 40, 41, 42, 43, 50, 51, 52, 53, 54, 60, 61, 62, 63, 64, 65, 70, 71, 72, 73, 74, 75, 76, 80, 81, 82, 83, 84, 85, 86, 87, 90, 91, 92, 93, 94, 95, 96, 97, 98, 210, 310, 320, 321, 410, 420, 421, 430, 431, 432, 510, 520, 521, 530
OFFSET
1,3
COMMENTS
There are precisely 1023 terms (corresponding to every nonempty subset of {0..9}).
A178788(a(n)) = 1. - Reinhard Zumkeller, Jun 30 2010
A193581(a(n)) > 0 for n > 9. - Reinhard Zumkeller, Aug 10 2011
A227362(a(n)) = a(n). - Reinhard Zumkeller, Jul 09 2013
For a fixed natural number r, any natural number n has a unique "Macaulay expansion" n = C(a_r,r)+C(a_{r-1},r-1)+...+C(a_1,1) with a_r > a_{r-1} > ... > a_1 >= 0. If r=10, concatenating the digits a_r, ..., a_1 gives the present sequence. The representation is valid for all n, but the concatenation only makes sense if all the a_i are < 10. - N. J. A. Sloane, Apr 05 2014
a(n) = A262557(A263327(n)); a(A263328(n)) = A262557(n). - Reinhard Zumkeller, Oct 15 2015
LINKS
B. Sury, Macaulay Expansion, Amer. Math. Monthly 121 (2014), no. 4, 359--360. MR3183022. [See p. 359. - N. J. A. Sloane, Apr 05 2014]
Eric Weisstein's World of Mathematics, Digit.
MATHEMATICA
Sort@ Flatten@ Table[FromDigits /@ Subsets[ Range[9, 0, -1], {n}], {n, 10}] (* Zak Seidov, May 10 2006 *)
PROG
(Haskell)
import Data.Set (fromList, minView, insert)
a009995 n = a009995_list !! n
a009995_list = 0 : f (fromList [1..9]) where
f s = case minView s of
Nothing -> []
Just (m, s') -> m : f (foldl (flip insert) s' $
map (10*m +) [0..m `mod` 10 - 1])
-- Reinhard Zumkeller, Aug 10 2011
(PARI) is(n)=fromdigits(vecsort(digits(n), , 12))==n \\ Charles R Greathouse IV, Apr 16 2015
CROSSREFS
Cf. A009993.
Cf. A262557 (sorted lexicographically), A263327, A263328.
Sequence in context: A032865 A032889 A308393 * A190219 A038367 A214958
KEYWORD
nonn,fini,full,base,look
AUTHOR
STATUS
approved