[go: up one dir, main page]

login
Search: a355731 -id:a355731
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of ways to choose a sequence of all different divisors, one of each prime index of n (with multiplicity).
+10
79
1, 1, 2, 0, 2, 1, 3, 0, 2, 1, 2, 0, 4, 2, 3, 0, 2, 0, 4, 0, 4, 1, 3, 0, 2, 3, 0, 0, 4, 1, 2, 0, 3, 1, 5, 0, 6, 3, 6, 0, 2, 1, 4, 0, 2, 2, 4, 0, 6, 0, 3, 0, 5, 0, 3, 0, 6, 3, 2, 0, 6, 1, 2, 0, 6, 1, 2, 0, 5, 2, 6, 0, 4, 5, 2, 0, 5, 2, 4, 0, 0, 1, 2, 0, 3, 3, 6
OFFSET
1,3
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
EXAMPLE
The a(49) = 6 ways are: (1,2), (1,4), (2,1), (2,4), (4,1), (4,2).
The a(182) = 5 ways are: (1,2,3), (1,2,6), (1,4,2), (1,4,3), (1,4,6).
The a(546) = 2 ways are: (1,2,4,3), (1,2,4,6).
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Table[Length[Select[Tuples[Divisors/@primeMS[n]], UnsameQ@@#&]], {n, 100}]
CROSSREFS
This is the strict version of A355731, firsts A355732.
For relatively prime instead of strict we have A355737, firsts A355738.
Positions of 0's are A355740.
A000005 counts divisors.
A001221 counts distinct prime factors, with sum A001414.
A001222 counts prime factors with multiplicity.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798.
A120383 lists numbers divisible by all of their prime indices.
A289508 gives GCD of prime indices, positions of 1's A289509.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 18 2022
STATUS
approved
Number of ways to choose a sequence of prime factors, one of each prime index of n.
+10
79
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2
OFFSET
1,13
COMMENTS
First differs from A355744 at a(169) = 4, A355744(169) = 3.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
FORMULA
Totally multiplicative with a(prime(k)) = A001221(k).
EXAMPLE
The prime indices of 1131 are {2,6,10}, and the a(1131) = 4 choices are: {2,2,2}, {2,2,5}, {2,3,2}, {2,3,5}.
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Table[Times@@PrimeNu/@primeMS[n], {n, 100}]
CROSSREFS
Positions of 0's are A299174.
The version for all divisors is A355731, firsts A355732.
Choosing prime-power divisors gives A355742.
Positions of 1's are A355743.
Counting multisets instead of sequences gives A355744.
The weakly increasing case is A355745, all divisors A355735.
A001414 adds up distinct prime factors, counted by A001221.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A289509 lists numbers with relatively prime prime indices.
A324850 lists numbers divisible by the product of their prime indices.
KEYWORD
nonn,mult
AUTHOR
Gus Wiseman, Jul 18 2022
STATUS
approved
Numbers of which it is not possible to choose a different prime factor of each prime index (with multiplicity).
+10
78
2, 4, 6, 8, 9, 10, 12, 14, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 34, 36, 38, 40, 42, 44, 45, 46, 48, 49, 50, 52, 54, 56, 57, 58, 60, 62, 63, 64, 66, 68, 70, 72, 74, 75, 76, 78, 80, 81, 82, 84, 86, 88, 90, 92, 94, 96, 98, 99, 100, 102, 104, 105, 106
OFFSET
1,1
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Includes all even numbers.
EXAMPLE
The terms together with their prime indices begin:
2: {1}
4: {1,1}
6: {1,2}
8: {1,1,1}
9: {2,2}
10: {1,3}
12: {1,1,2}
14: {1,4}
16: {1,1,1,1}
18: {1,2,2}
20: {1,1,3}
21: {2,4}
22: {1,5}
24: {1,1,1,2}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[100], Select[Tuples[primeMS/@primeMS[#]], UnsameQ@@#&]=={}&]
CROSSREFS
The odd case is A355535.
The case of all divisors (not just primes) is A355740, zeros of A355739.
These choices are variously counted by A355741, A355744, A355745.
A001414 adds up distinct prime divisors, counted by A001221.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A120383 lists numbers divisible by all of their prime indices.
A324850 lists numbers divisible by the product of their prime indices.
A355731 counts choices of a divisor of each prime index, firsts A355732.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 24 2022
STATUS
approved
Numbers of which it is not possible to choose a different divisor of each prime index.
+10
74
4, 8, 12, 16, 18, 20, 24, 27, 28, 32, 36, 40, 44, 48, 50, 52, 54, 56, 60, 64, 68, 72, 76, 80, 81, 84, 88, 90, 92, 96, 100, 104, 108, 112, 116, 120, 124, 125, 126, 128, 132, 135, 136, 140, 144, 148, 150, 152, 156, 160, 162, 164, 168, 172, 176, 180, 184, 188
OFFSET
1,1
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
By Hall's marriage theorem, k is a term if and only if there is a sub-multiset S of the prime indices of k such that fewer than |S| numbers are divisors of a member of S. Equivalently, k is divisible by a member of A370348. - Robert Israel, Feb 15 2024
LINKS
FORMULA
We have A001221(a(n)) >= A303975(a(n)).
EXAMPLE
The terms together with their prime indices begin:
4: {1,1}
8: {1,1,1}
12: {1,1,2}
16: {1,1,1,1}
18: {1,2,2}
20: {1,1,3}
24: {1,1,1,2}
27: {2,2,2}
28: {1,1,4}
32: {1,1,1,1,1}
36: {1,1,2,2}
40: {1,1,1,3}
44: {1,1,5}
48: {1,1,1,1,2}
For example, the choices of a divisor of each prime index of 90 are: (1,1,1,1), (1,1,1,3), (1,1,2,1), (1,1,2,3), (1,2,1,1), (1,2,1,3), (1,2,2,1), (1,2,2,3). But none of these has all distinct elements, so 90 is in the sequence.
MAPLE
filter:= proc(n) uses numtheory, GraphTheory; local B, S, F, D, E, G, t, d;
F:= ifactors(n)[2];
F:= map(t -> [pi(t[1]), t[2]], F);
D:= `union`(seq(divisors(t[1]), t = F));
F:= map(proc(t) local i; seq([t[1], i], i=1..t[2]) end proc, F);
if nops(D) < nops(F) then return false fi;
E:= {seq(seq({t, d}, d=divisors(t[1])), t = F)};
S:= map(t -> convert(t, name), [op(F), op(D)]);
E:= map(e -> map(convert, e, name), E);
G:= Graph(S, E);
B:= BipartiteMatching(G);
B[1] = nops(F);
end proc:
remove(filter, [$1..200]); # Robert Israel, Feb 15 2024
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[100], Select[Tuples[Divisors/@primeMS[#]], UnsameQ@@#&]=={}&]
CROSSREFS
Positions of 0's in A355739.
The case of just prime factors (not all divisors) is A355529, odd A355535.
The unordered case is counted by A355733, firsts A355734.
A000005 counts divisors.
A001414 adds up distinct prime divisors, counted by A001221.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A120383 lists numbers divisible by all of their prime indices.
A324850 lists numbers divisible by the product of their prime indices.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A355741 chooses prime factors of prime indices, variations A355744, A355745.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 22 2022
STATUS
approved
Number of condensed integer partitions of n.
+10
53
1, 1, 1, 2, 3, 3, 5, 6, 9, 10, 14, 16, 23, 27, 33, 41, 51, 62, 75, 93, 111, 134, 159, 189, 226, 271, 317, 376, 445, 520, 609, 714, 832, 972, 1129, 1304, 1520, 1753, 2023, 2326, 2692, 3077, 3540, 4050, 4642, 5298, 6054, 6887, 7854, 8926, 10133, 11501, 13044
OFFSET
0,4
COMMENTS
Suppose that p is a partition of n. Let x(1), x(2), ..., x(k) be the distinct parts of p, and let m(i) be the multiplicity of x(i) in p. Let c(p) be the partition {m(1)*x(1), m(2)*x(2), ..., x(k)*m(k)} of n. Call a partition q of n a condensed partition of n if q = c(p) for some partition p of n. Then a(n) is the number of distinct condensed partitions of n. Note that c(p) = p if and only if p has distinct parts and that condensed partitions can have repeated parts.
Also the number of integer partitions of n such that it is possible to choose a different divisor of each part. For example, the partition (6,4,4,1) has choices (3,2,4,1), (3,4,2,1), (6,2,4,1), (6,4,2,1) so is counted under a(15). - Gus Wiseman, Mar 12 2024
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..100 (first 84 terms from Manfred Scheucher)
Manfred Scheucher, Python Script
EXAMPLE
a(5) = 3 gives the number of partitions of 5 that result from condensations as shown here: 5 -> 5, 41 -> 41, 32 -> 32, 311 -> 32, 221 -> 41, 2111 -> 32, 11111 -> 5.
From Gus Wiseman, Mar 12 2024: (Start)
The a(1) = 1 through a(9) = 10 condensed partitions:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(2,1) (2,2) (3,2) (3,3) (4,3) (4,4) (5,4)
(3,1) (4,1) (4,2) (5,2) (5,3) (6,3)
(5,1) (6,1) (6,2) (7,2)
(3,2,1) (3,2,2) (7,1) (8,1)
(4,2,1) (3,3,2) (4,3,2)
(4,2,2) (4,4,1)
(4,3,1) (5,2,2)
(5,2,1) (5,3,1)
(6,2,1)
(End)
MAPLE
b:= proc(n, i) option remember; `if`(n=0, {[]},
`if`(i=1, {[n]}, {seq(map(x-> `if`(j=0, x,
sort([x[], i*j])), b(n-i*j, i-1))[], j=0..n/i)}))
end:
a:= n-> nops(b(n$2)):
seq(a(n), n=0..50); # Alois P. Heinz, Jul 01 2019
MATHEMATICA
u[n_, k_] := u[n, k] = Map[Total, Split[IntegerPartitions[n][[k]]]]; t[n_] := t[n] = DeleteDuplicates[Table[Sort[u[n, k]], {k, 1, PartitionsP[n]}]]; Table[Length[t[n]], {n, 0, 30}]
Table[Length[Select[IntegerPartitions[n], Length[Select[Tuples[Divisors/@#], UnsameQ@@#&]]>0&]], {n, 0, 30}] (* Gus Wiseman, Mar 12 2024 *)
CROSSREFS
The strict case is A000009.
These partitions have ranks A368110, complement A355740.
The complement is counted by A370320.
The version for prime factors (not all divisors) is A370592, ranks A368100.
The complement for prime factors is A370593, ranks A355529.
For a unique choice we have A370595, ranks A370810.
For multiple choices we have A370803, ranks A370811.
The case without ones is A370805, complement A370804.
The version for factorizations is A370814, complement A370813.
A000005 counts divisors.
A000041 counts integer partitions.
A237685 counts partitions of depth 1, or A353837 if we include depth 0.
A355731 counts choices of a divisor of each prime index, firsts A355732.
KEYWORD
nonn
AUTHOR
Clark Kimberling, Mar 15 2014
EXTENSIONS
Typo in definition corrected by Manfred Scheucher, May 29 2015
Name edited by Gus Wiseman, Mar 13 2024
STATUS
approved
Number of multisets that can be obtained by choosing a prime factor of each prime index of n.
+10
49
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2
OFFSET
1,13
COMMENTS
First differs from A355741 at a(169) = 3, A355741(169) = 4.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
EXAMPLE
The a(169) = 3 multisets are: {2,2}, {2,3}, {3,3}.
The a(507) = 3 multisets are: {2,2,2}, {2,2,3}, {2,3,3}.
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Table[Length[Union[Sort/@Tuples[primeMS/@primeMS[n]]]], {n, 100}]
CROSSREFS
Choosing from all divisors gives A355733, firsts A355734.
Counting sequences instead of multisets gives A355741.
Choosing weakly increasing sequences of divisors gives A355745.
A001414 adds up distinct prime divisors, counted by A001221.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A324850 lists numbers divisible by the product of their prime indices.
A344606 counts alternating permutations of prime indices.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 18 2022
STATUS
approved
Least k such that there are exactly n ways to choose a sequence of divisors, one of each element of the multiset of prime indices of k (with multiplicity).
+10
48
1, 3, 7, 9, 53, 21, 311, 27, 49, 159, 8161, 63, 38873, 933, 371, 81, 147, 477, 2177, 24483, 189, 2809, 343, 2799, 1113, 243, 57127, 16483, 441, 1431, 6531, 73449, 2597, 567, 96721, 8427, 1029, 8397, 3339, 15239, 729, 49449, 1323, 19663, 4293, 2401, 19593, 7791
OFFSET
1,2
COMMENTS
This is the position of first appearance of n in A355731.
Appears to be a subset of A353397.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
EXAMPLE
The terms together with their prime indices begin:
1: {}
3: {2}
7: {4}
9: {2,2}
53: {16}
21: {2,4}
311: {64}
27: {2,2,2}
49: {4,4}
159: {2,16}
8161: {1024}
63: {2,2,4}
For example, the choices for a(12) = 63 are:
(1,1,1) (1,2,2) (2,1,4)
(1,1,2) (1,2,4) (2,2,1)
(1,1,4) (2,1,1) (2,2,2)
(1,2,1) (2,1,2) (2,2,4)
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
mnrm[s_]:=If[Min@@s==1, mnrm[DeleteCases[s-1, 0]]+1, 0];
az=Table[Times@@Length/@Divisors/@primeMS[n], {n, 1000}];
Table[Position[az, k][[1, 1]], {k, mnrm[az]}]
CROSSREFS
Positions of first appearances in A355731.
Counting distinct sequences after sorting: A355734, firsts of A355733.
Requiring the result to be weakly increasing: A355736, firsts of A355735.
Requiring the result to be relatively prime: A355738, firsts of A355737.
A000005 counts divisors.
A001414 adds up distinct prime divisors, counted by A001221.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A120383 lists numbers divisible by all of their prime indices.
A324850 lists numbers divisible by the product of their prime indices.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 21 2022
STATUS
approved
Numbers of which it is possible to choose a different divisor of each prime index.
+10
41
1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97
OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
By Hall's marriage theorem, k is a term if and only if there is no sub-multiset S of the prime indices of k such that fewer than |S| numbers are divisors of a member of S. Equivalently, there is no divisor of k in A370348. - Robert Israel, Feb 15 2024
LINKS
FORMULA
Heinz numbers of the partitions counted by A239312.
EXAMPLE
The terms together with their prime indices begin:
1: {}
2: {1}
3: {2}
5: {3}
6: {1,2}
7: {4}
9: {2,2}
10: {1,3}
11: {5}
13: {6}
14: {1,4}
15: {2,3}
17: {7}
19: {8}
21: {2,4}
22: {1,5}
23: {9}
25: {3,3}
26: {1,6}
29: {10}
30: {1,2,3}
MAPLE
filter:= proc(n) uses numtheory, GraphTheory; local B, S, F, D, E, G, t, d;
F:= ifactors(n)[2];
F:= map(t -> [pi(t[1]), t[2]], F);
D:= `union`(seq(divisors(t[1]), t = F));
F:= map(proc(t) local i; seq([t[1], i], i=1..t[2]) end proc, F);
if nops(D) < nops(F) then return false fi;
E:= {seq(seq({t, d}, d=divisors(t[1])), t = F)};
S:= map(t -> convert(t, name), [op(F), op(D)]);
E:= map(e -> map(convert, e, name), E);
G:= Graph(S, E);
B:= BipartiteMatching(G);
B[1] = nops(F);
end proc:
select(filter, [$1..100]); # Robert Israel, Feb 15 2024
MATHEMATICA
prix[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[100], Select[Tuples[Divisors/@prix[#]], UnsameQ@@#&]!={}&]
CROSSREFS
Partitions of this type are counted by A239312, complement A370320.
Positions of nonzero terms in A355739.
Complement of A355740.
For just prime divisors we have A368100, complement A355529 (odd A355535).
A000005 counts divisors.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A120383 lists numbers divisible by all of their prime indices.
A324850 lists numbers divisible by the product of their prime indices.
A355731 counts choices of a divisor of each prime index, firsts A355732.
A355741 chooses prime factors of prime indices, variations A355744, A355745.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 15 2023
STATUS
approved
Number of ways to choose a prime factor of each prime index of n (with multiplicity, in weakly increasing order) such that the result is also weakly increasing.
+10
40
1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 0, 0, 2, 0, 2, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2
OFFSET
1,13
COMMENTS
First differs from A355741 and A355744 at n = 35.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
EXAMPLE
The prime indices of 1469 are {6,30}, and there are five valid choices: (2,2), (2,3), (2,5), (3,3), (3,5), so a(1469) = 5.
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Table[Length[Select[Tuples[Union/@primeMS/@primeMS[n]], LessEqual@@#&]], {n, 100}]
CROSSREFS
Allowing all divisors gives A355735, firsts A355736, reverse A355749.
Not requiring an increasing sequence gives A355741.
Choosing a multiset instead of sequence gives A355744.
A000005 counts divisors.
A001414 adds up distinct prime divisors, counted by A001221.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A120383 lists numbers divisible by all of their prime indices.
A324850 lists numbers divisible by the product of their prime indices.
A355731 chooses of a divisor of each prime index, firsts A355732.
A355733 chooses a multiset of divisors, firsts A355734.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 18 2022
STATUS
approved
Number of ways to choose a binary index of each binary index of n.
+10
35
1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 4, 4, 4, 4, 8, 8, 8, 8, 3, 3, 3, 3, 6, 6, 6, 6, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 12, 12, 12
OFFSET
0,5
COMMENTS
First differs from A367912 at a(52) = 8, A367912(52) = 7.
A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.
Run-lengths are all 4 or 8.
FORMULA
a(n) = Product_{k in A048793(n)} A000120(k).
EXAMPLE
The binary indices of binary indices of 20 are {{1,2},{1,3}}, with choices (1,1), (1,3), (2,1), (2,3), so a(20) = 4.
The binary indices of binary indices of 52 are {{1,2},{1,3},{2,3}}, with choices (1,1,1), (1,1,3), (1,3,2), (1,3,3), (2,1,2), (2,1,3), (2,3,2), (2,3,3), so a(52) = 8.
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
Table[Length[Tuples[bpe/@bpe[n]]], {n, 0, 100}]
CROSSREFS
All entries appear to belong to A003586.
Positions of ones are A253317.
The version for prime indices is A355741, for multisets A355744.
Choosing a multiset (not sequence) gives A367912, firsts A367913.
Positions of first appearances are A368111, sorted A368112.
A048793 lists binary indices, length A000120, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 12 2023
STATUS
approved

Search completed in 0.037 seconds