[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a338956 -id:a338956
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of oriented colorings of the 96 edges (or triangular faces) of the 4-D 24-cell using subsets of a set of n colors.
+10
9
1, 137548893254081168086800768, 11046328890861011039111168376671536861388643, 10897746068379654103881579020805286236644252743361724416
OFFSET
1,2
COMMENTS
Each chiral pair is counted as two when enumerating oriented arrangements. The Schläfli symbol of the 24-cell is {3,4,3}. It has 24 octahedral facets. It is self-dual. There are 576 elements in the rotation group of the 24-cell. They divide into 20 conjugacy classes. The first formula is obtained by averaging the edge (or face) cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
Count Even Cycle Indices Count Even Cycle Indices
1 x_1^96 6+6+36+36 x_4^24
72 x_1^4x_2^46 32 x_2^3x_6^15
1+18 x_2^48 8+8+32 x_6^16
32 x_1^6x_3^30 72+72 x_8^12
8+8+32 x_3^32 48+48 x_12^8
FORMULA
a(n) = (96*n^8 + 144*n^12 + 48*n^16 + 32*n^18 + 84*n^24 + 48*n^32 + 32*n^36 + 19*n^48 + 72*n^50 + n^96) / 576.
a(n) = Sum_{j=1..Min(n,96)} A338956(n) * binomial(n,j).
a(n) = A338953(n) + A338954(n) = 2*A338953(n) - A338955(n) = 2*A338954(n) + A338955(n).
MATHEMATICA
Table[(96n^8+144n^12+48n^16+32n^18+84n^24+48n^32+32n^36+19n^48+72n^50+n^96)/576, {n, 15}]
CROSSREFS
Cf. A338953 (unoriented), A338954 (chiral), A338955 (achiral), A338956 (exactly n colors), A338948 (vertices, facets), A331350 (5-cell), A331358 (8-cell edges, 16-cell faces), A331354 (16-cell edges, 8-cell faces), A338964 (120-cell, 600-cell).
KEYWORD
nonn,easy
AUTHOR
Robert A. Russell, Nov 17 2020
STATUS
approved
Number of unoriented colorings of the 96 edges (or triangular faces) of the 4-D 24-cell using exactly n colors.
+10
5
1, 68774446639102959610154174, 5523164445430505754875774375105924818979901, 5448873034167734394172913824852272971748608894646534804, 10956401434158576570935668826433407535831446552957081921713485225
OFFSET
1,2
COMMENTS
Each chiral pair is counted as one when enumerating unoriented arrangements. The Schläfli symbol of the 24-cell is {3,4,3}. It has 24 octahedral facets. It is self-dual. For n>96, a(n) = 0.
LINKS
FORMULA
A338953(n) = Sum_{j=1..Min(n,96)} a(n) * binomial(n,j).
a(n) = A338956(n) - A338958(n) = (A338956(n) + A338959(n)) / 2 = A338958(n) + A338959(n).
MATHEMATICA
bp[j_] := Sum[k! StirlingS2[j, k] x^k, {k, 0, j}] (* binomial series *)
Drop[CoefficientList[bp[8]/12+bp[12]/8+bp[16]/8+bp[18]/9+bp[20]/6+19bp[24]/96+bp[32]/24+bp[36]/36+43bp[48]/1152+bp[50]/16+bp[52]/96+bp[60]/96+bp[96]/1152, x], 1]
CROSSREFS
Cf. A338956 (oriented), A338958 (chiral), A338959 (achiral), A338953 (up to n colors), A338949 (vertices, facets), A063843 (5-cell), A331359 (8-cell edges, 16-cell faces), A331355 (16-cell edges, 8-cell faces), A338981 (120-cell, 600-cell).
KEYWORD
fini,nonn,full
AUTHOR
Robert A. Russell, Nov 17 2020
STATUS
approved
Number of chiral pairs of colorings of the 96 edges (or triangular faces) of the 4-D 24-cell using exactly n colors.
+10
5
68774446614978208476646592, 5523164445430504871588714239322107782006441, 5448873034167734394145221152621861950913444709790439644, 10956401434158576570935650756489255491646473924447332613392130825
OFFSET
2,1
COMMENTS
Each member of a chiral pair is a reflection but not a rotation of the other. The Schläfli symbol of the 24-cell is {3,4,3}. It has 24 octahedral facets. It is self-dual. For n>96, a(n) = 0.
LINKS
FORMULA
A338954(n) = Sum_{j=2..Min(n,96)} a(n) * binomial(n,j).
a(n) = A338956(n) - A338957(n) = (A338956(n) - A338959(n)) / 2 = A338957(n) - A338959(n).
MATHEMATICA
bp[j_] := Sum[k! StirlingS2[j, k] x^k, {k, 0, j}] (*binomial series*)
Drop[CoefficientList[bp[8]/12+bp[12]/8-bp[16]/24-bp[18]/18-bp[20]/6-5bp[24]/96+bp[32]/24+bp[36]/36-5bp[48]/1152+bp[50]/16-bp[52]/96-bp[60]/96+bp[96]/1152, x], 2]
CROSSREFS
Cf. A338956 (oriented), A338957 (unoriented), A338959 (achiral), A338954 (up to n colors), A338950 (vertices, facets), A331352 (5-cell), A331360 (8-cell edges, 16-cell faces), A331356 (16-cell edges, 8-cell faces), A338982 (120-cell, 600-cell).
KEYWORD
fini,nonn,full
AUTHOR
Robert A. Russell, Nov 17 2020
STATUS
approved
Number of achiral colorings of the 96 edges (or triangular faces) of the 4-D 24-cell using exactly n colors.
+10
5
1, 24124751133507582, 883287060135783817036973460, 27692672230411020835164184856095160, 18069944152044184972628509749308321354400, 1018093811663859334508633754250963606821400320
OFFSET
1,2
COMMENTS
An achiral coloring is identical to its reflection. The Schläfli symbol of the 24-cell is {3,4,3}. It has 24 octahedral facets. It is self-dual. For n>60, a(n) = 0.
LINKS
FORMULA
A338955(n) = Sum_{j=1..Min(n,60)} a(n) * binomial(n,j).
a(n) = 2*A338957(n) - A338956(n) = A338956(n) - 2*A338958(n) = A338957(n) - A338958(n).
MATHEMATICA
bp[j_] := Sum[k! StirlingS2[j, k] x^k, {k, 0, j}] (*binomial series*)
Drop[CoefficientList[bp[16]/6+bp[18]/6+bp[20]/3+bp[24]/4+bp[48]/24+bp[52]/48+bp[60]/48, x], 1]
CROSSREFS
Cf. A338956 (oriented), A338957 (unoriented), A338958 (chiral), A338955 (up to n colors), A338951 (vertices, facets), A331353 (5-cell), A331361 (8-cell edges, 16-cell faces), A331357 (16-cell edges, 8-cell faces), A338983 (120-cell, 600-cell).
KEYWORD
fini,nonn,full
AUTHOR
Robert A. Russell, Nov 17 2020
STATUS
approved

Search completed in 0.006 seconds