Displaying 1-4 of 4 results found.
page
1
Number of oriented colorings of the 96 edges (or triangular faces) of the 4-D 24-cell using subsets of a set of n colors.
+10
9
1, 137548893254081168086800768, 11046328890861011039111168376671536861388643, 10897746068379654103881579020805286236644252743361724416
COMMENTS
Each chiral pair is counted as two when enumerating oriented arrangements. The Schläfli symbol of the 24-cell is {3,4,3}. It has 24 octahedral facets. It is self-dual. There are 576 elements in the rotation group of the 24-cell. They divide into 20 conjugacy classes. The first formula is obtained by averaging the edge (or face) cycle indices after replacing x_i^j with n^j according to the Pólya enumeration theorem.
Count Even Cycle Indices Count Even Cycle Indices
1 x_1^96 6+6+36+36 x_4^24
72 x_1^4x_2^46 32 x_2^3x_6^15
1+18 x_2^48 8+8+32 x_6^16
32 x_1^6x_3^30 72+72 x_8^12
8+8+32 x_3^32 48+48 x_12^8
FORMULA
a(n) = (96*n^8 + 144*n^12 + 48*n^16 + 32*n^18 + 84*n^24 + 48*n^32 + 32*n^36 + 19*n^48 + 72*n^50 + n^96) / 576.
a(n) = Sum_{j=1..Min(n,96)} A338956(n) * binomial(n,j).
MATHEMATICA
Table[(96n^8+144n^12+48n^16+32n^18+84n^24+48n^32+32n^36+19n^48+72n^50+n^96)/576, {n, 15}]
CROSSREFS
Cf. A338953 (unoriented), A338954 (chiral), A338955 (achiral), A338956 (exactly n colors), A338948 (vertices, facets), A331350 (5-cell), A331358 (8-cell edges, 16-cell faces), A331354 (16-cell edges, 8-cell faces), A338964 (120-cell, 600-cell).
Number of unoriented colorings of the 96 edges (or triangular faces) of the 4-D 24-cell using exactly n colors.
+10
5
1, 68774446639102959610154174, 5523164445430505754875774375105924818979901, 5448873034167734394172913824852272971748608894646534804, 10956401434158576570935668826433407535831446552957081921713485225
COMMENTS
Each chiral pair is counted as one when enumerating unoriented arrangements. The Schläfli symbol of the 24-cell is {3,4,3}. It has 24 octahedral facets. It is self-dual. For n>96, a(n) = 0.
FORMULA
A338953(n) = Sum_{j=1..Min(n,96)} a(n) * binomial(n,j).
MATHEMATICA
bp[j_] := Sum[k! StirlingS2[j, k] x^k, {k, 0, j}] (* binomial series *)
Drop[CoefficientList[bp[8]/12+bp[12]/8+bp[16]/8+bp[18]/9+bp[20]/6+19bp[24]/96+bp[32]/24+bp[36]/36+43bp[48]/1152+bp[50]/16+bp[52]/96+bp[60]/96+bp[96]/1152, x], 1]
CROSSREFS
Cf. A338956 (oriented), A338958 (chiral), A338959 (achiral), A338953 (up to n colors), A338949 (vertices, facets), A063843 (5-cell), A331359 (8-cell edges, 16-cell faces), A331355 (16-cell edges, 8-cell faces), A338981 (120-cell, 600-cell).
Number of chiral pairs of colorings of the 96 edges (or triangular faces) of the 4-D 24-cell using exactly n colors.
+10
5
68774446614978208476646592, 5523164445430504871588714239322107782006441, 5448873034167734394145221152621861950913444709790439644, 10956401434158576570935650756489255491646473924447332613392130825
COMMENTS
Each member of a chiral pair is a reflection but not a rotation of the other. The Schläfli symbol of the 24-cell is {3,4,3}. It has 24 octahedral facets. It is self-dual. For n>96, a(n) = 0.
FORMULA
A338954(n) = Sum_{j=2..Min(n,96)} a(n) * binomial(n,j).
MATHEMATICA
bp[j_] := Sum[k! StirlingS2[j, k] x^k, {k, 0, j}] (*binomial series*)
Drop[CoefficientList[bp[8]/12+bp[12]/8-bp[16]/24-bp[18]/18-bp[20]/6-5bp[24]/96+bp[32]/24+bp[36]/36-5bp[48]/1152+bp[50]/16-bp[52]/96-bp[60]/96+bp[96]/1152, x], 2]
CROSSREFS
Cf. A338956 (oriented), A338957 (unoriented), A338959 (achiral), A338954 (up to n colors), A338950 (vertices, facets), A331352 (5-cell), A331360 (8-cell edges, 16-cell faces), A331356 (16-cell edges, 8-cell faces), A338982 (120-cell, 600-cell).
Number of achiral colorings of the 96 edges (or triangular faces) of the 4-D 24-cell using exactly n colors.
+10
5
1, 24124751133507582, 883287060135783817036973460, 27692672230411020835164184856095160, 18069944152044184972628509749308321354400, 1018093811663859334508633754250963606821400320
COMMENTS
An achiral coloring is identical to its reflection. The Schläfli symbol of the 24-cell is {3,4,3}. It has 24 octahedral facets. It is self-dual. For n>60, a(n) = 0.
FORMULA
A338955(n) = Sum_{j=1..Min(n,60)} a(n) * binomial(n,j).
MATHEMATICA
bp[j_] := Sum[k! StirlingS2[j, k] x^k, {k, 0, j}] (*binomial series*)
Drop[CoefficientList[bp[16]/6+bp[18]/6+bp[20]/3+bp[24]/4+bp[48]/24+bp[52]/48+bp[60]/48, x], 1]
CROSSREFS
Cf. A338956 (oriented), A338957 (unoriented), A338958 (chiral), A338955 (up to n colors), A338951 (vertices, facets), A331353 (5-cell), A331361 (8-cell edges, 16-cell faces), A331357 (16-cell edges, 8-cell faces), A338983 (120-cell, 600-cell).
Search completed in 0.006 seconds
|