[go: up one dir, main page]

login
Search: a321558 -id:a321558
     Sort: relevance | references | number | modified | created      Format: long | short | data
Sum_{n >= 1} a(n)/n^s = 1/(Sum_{n >= 1} (-1)^(n + 1)/n^s).
+10
30
1, 1, -1, 2, -1, -1, -1, 4, 0, -1, -1, -2, -1, -1, 1, 8, -1, 0, -1, -2, 1, -1, -1, -4, 0, -1, 0, -2, -1, 1, -1, 16, 1, -1, 1, 0, -1, -1, 1, -4, -1, 1, -1, -2, 0, -1, -1, -8, 0, 0, 1, -2, -1, 0, 1, -4, 1, -1, -1, 2, -1, -1, 0, 32, 1, 1, -1, -2, 1, 1, -1, 0, -1, -1, 0, -2, 1, 1, -1, -8, 0, -1, -1, 2, 1, -1, 1, -4, -1, 0, 1, -2, 1, -1, 1, -16, -1, 0, 0, 0
OFFSET
1,4
COMMENTS
Dirichlet inverse of A062157. - R. J. Mathar, Jul 15 2010
The first 31 terms equal the values of the Ramanujan sum c_n(8) -- see for example A085906 -- but a(32) <> c_{32}(8). - R. J. Mathar, Apr 02 2011
From Peter Bala, Mar 12 2019: (Start)
Let Mu(n) = (-1)^(n+1)*a(n), an analog of the Möbius function mu(n). Then for arithmetic functions f(n) and g(n) we have the following analog of the Möbius inversion formula: f(n) = Sum_{d divides n} (-1)^((1+d)*(1+n/d))*g(d) iff g(n) = Sum_{d divides n} (-1)^((1+d)*(1+n/d))*Mu(n/d)*f(d).
Each of the following two equations implies the other: F(x) = Sum_{n >= 1} (-1)^(n+1)*G(n*x); G(x) = Sum_{n >= 1} a(n)*F(n*x). See G. Pólya and G. Szegő, Part V111, Chap. 1, Nos. 66-68.2. (End)
Let D(n) denote the set of partitions of n into distinct parts. Then Sum_{parts k in D(n)} a(k) = |D(n-1)| = A000009(n-1). For example, D(6) = {6, 1 + 5, 2 + 4, 1 + 2 + 3} and the sum a(6) + (a(1) + a(5)) + (a(2) + a(4)) + (a(1) + a(2) + a(3)) = 3 = |D(5)|. - Peter Bala, Mar 14 2019
From Petros Hadjicostas, Jul 25 2020: (Start)
For p prime >= 2, Petrogradsky (2003) defined the multiplicative functions 1_p and mu_p in the following way:
1_p(n) = 1 when gcd(n,p) = 1 and 1_p(n) = 1 - p when gcd(n,p) = p;
mu_p(n) = mu(n) when gcd(n,p) = 1 and mu_p(n) = mu(m)*(p^s - p^(s-1)) when n = m*p^s with gcd(m,p) = 1 and s >= 1.
We have 1_2(n) = A062157(n), 1_3(n) = A061347(n) (with offset 1), a(n) = mu_2(n), and A117997(n) = mu_3(n) for n >= 1.
Some of the results by other contributors can be generalized:
(i) Rogel's (1897) formula becomes Sum_{d | n} 1_p(d) * mu_p(n/d) = 0 for n > 1. Thus, 1_p is the Dirichlet inverse of mu_p.
(ii) R. J. Mathar's Dirichlet g.f. for mu_p becomes 1/(zeta(s) * (1 - p^(1-s))). The Dirichlet g.f. for 1_p is zeta(s) * (1 - p^(1-s)).
(iii) Benoit Cloitre's formula becomes 1 = Sum_{k=1..n} mu_p(k)*g_p(n/k), where g_p(x) = floor(x) - p*floor(x/p) = floor(x) mod p.
(iv) Paul D. Hanna's formula becomes Sum_{n >= 1} (mu_p(n)/n)*log((1 - x^(n*p))/(1 - x^n)) = x.
(v) The definition of A117997 generalizes to Sum_{d | n} mu_p(d) = n, if n = p^s for s >= 0, and = 0, otherwise.
(vi) By differentiating both sides of (iv) w.r.t. x and multiplying both sides by x, we get Sum_{n >= 1} mu_p(n)*(x^n + 2*x^(2*n) + ... + (p-1)*x^(n*(p-1)))/(1 + x^n + x^(2*n) + ... + x^(n*(p-1))) = x, which generalizes one of Peter Bala's formulas. It can be thought as a "generalized Lambert series".
(vii) Obviously, f(n) = Sum_{d | n} 1_p(n/d)*g(d) if and only if g(n) = Sum_{d | n} mu_p(n/d)*f(d). (End)
REFERENCES
G. Pólya and G. Szegő, Problems and Theorems in Analysis Volume II. Springer_Verlag 1976.
LINKS
V. M. Petrogradsky, Witt's formula for restricted Lie algebras, Advances in Applied Mathematics, 30 (2003), 219-227.
V. M. Petrogradsky, Witt's formula for restricted Lie algebras, Advances in Applied Mathematics, 30 (2003), 219-227.
Franz Rogel, Transformationen arithmetischer Reihen, S.-B. Kgl. Bohmischen Ges. Wiss. Article LI (1897), Prague (31 pages); see pp. 10-11 and especially Eqs. (21) - (24). [There are some obvious typos there; especially Eq. (24) should become Sum_{t | v} (-1)^(v/t) * c(t) = 0 for v > 1, which is the equation a(n) = Sum{k | n, 1 < k} (-1)^k a(n/k), for n >= 2, in the Formula section below. - Petros Hadjicostas, Jul 21 2019]
FORMULA
a(1) = 1 and a(n) = Sum{k | n, 1 < k} (-1)^k a(n/k) for n >= 2; the sum is over the divisors, k, of n, where k > 1. If n is odd, a(n) = mu(n), where mu(.) is the Moebius function. If n is even, a(n) = mu(m)* 2^(k-1), where n = m*2^k, m is odd integer, and k is a positive integer.
Sum_{n > 0} a(n)*x^n/(1 + x^n) = x. Moebius transform of A048298. Multiplicative with a(2^e) = 2^(e - 1), a(p) = -1 for p > 2, a(p^e) = 0 for p > 2 and e > 1. - Vladeta Jovovic, Jan 02 2003
Sum_{n > 0} a(n)*log(1 + x^n)/n = x. - Paul D. Hanna, May 06 2003
a(n) = 0 if and only if n is divisible by the square of an odd prime (A038838). - Michael Somos, Aug 22 2006
1 = Sum_{k=1..n} a(k)*g(n/k), where g(x) = floor(x) - 2*floor(x/2). - Benoit Cloitre, Nov 11 2010
Dirichlet g.f.: 1/( zeta(s) * (1 - 2^(1-s)) ). - R. J. Mathar, Apr 02 2011
From Peter Bala, Mar 13 2019: (Start)
Sum_{n >= 1} a(n)*x^n/(1 + x^n) = x
Sum_{n >= 1} a(n)*x^n/(1 - x^n) = x + 2*x^2 + 4*x^4 + 8*x^8 + 16*x^16 + ...
Sum_{n >= 1} a(n)*x^n/(1 + (-x)^n) = x + 2*(x^2 + x^4 + x^8 + x^16 + ...)
Sum_{n >= 1} a(n)*x^n/(1 - (-x)^n) = x + 2*(x^4 + 3*x^8 + 7*x^16 + 15*x^32 + ...). (End)
G.f. A(x) satisfies: A(x) = x + A(x^2) - A(x^3) + A(x^4) - A(x^5) + ... - Ilya Gutkovskiy, May 11 2019
Sum_{k=1..n} abs(a(k)) ~ 2*n*(log(n) - 1 + gamma + 11*log(2)/6 - 12*zeta'(2)/Pi^2) / (log(2)*Pi^2), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, May 30 2024
MATHEMATICA
a[n_] := If[n == 1, 1, Product[{p, e} = pe; If[2 == p, e--, If[e > 1, p = 0, p = -1]]; p^e, {pe, FactorInteger[n]}]];
a /@ Range[1, 100] (* Jean-François Alcover, Oct 01 2019 *)
PROG
(PARI) {a(n)=local(k); if(n<1, 0, k=valuation(n, 2); moebius(n/2^k)*2^max(0, k-1))} /* Michael Somos, Aug 22 2006 */
(PARI) A067856(n) = { my(f=factor(n)); for(i=1, #f~, if(2==f[i, 1], f[i, 2]--, if(f[i, 2]>1, f[i, 1]=0, f[i, 1]=-1))); factorback(f); }; \\ Antti Karttunen, Sep 27 2018, after Vladeta Jovovic_'s multiplicative formula.
CROSSREFS
Cf. A000009, A038712, A038838, A048298 (inverse Mobius transform), A061347, A062157, A085906, A117997, A321088 (Euler transform), A321558.
KEYWORD
sign,mult
AUTHOR
Leroy Quet, Feb 15 2002
STATUS
approved
Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = Sum_{d|n} (-1)^(n/d+d)*d^k.
+10
16
1, 1, -2, 1, -3, 2, 1, -5, 4, -1, 1, -9, 10, -3, 2, 1, -17, 28, -13, 6, -4, 1, -33, 82, -57, 26, -12, 2, 1, -65, 244, -241, 126, -50, 8, 0, 1, -129, 730, -993, 626, -252, 50, -3, 3, 1, -257, 2188, -4033, 3126, -1394, 344, -45, 13, -4, 1, -513, 6562, -16257, 15626, -8052, 2402, -441, 91, -18, 2
OFFSET
1,3
COMMENTS
For each k, the k-th column sequence (T(n,k))(n>=1) is a multiplicative function of n, equal to (-1)^(n+1)*(Id_k * 1) in the notation of the Bala link. - Peter Bala, Mar 19 2022
FORMULA
G.f. of column k: Sum_{j>=1} (-1)^(j+1)*j^k*x^j/(1 + x^j).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
-2, -3, -5, -9, -17, -33, ...
2, 4, 10, 28, 82, 244, ...
-1, -3, -13, -57, -241, -993, ...
2, 6, 26, 126, 626, 3126, ...
-4, -12, -50, -252, -1394, -8052, ...
MATHEMATICA
Table[Function[k, Sum[(-1)^(n/d+d) d^k, {d, Divisors[n]}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
Table[Function[k, SeriesCoefficient[Sum[(-1)^(j + 1) j^k x^j/(1 + x^j), {j, 1, n}], {x, 0, n}]][i - n], {i, 0, 11}, {n, 1, i}] // Flatten
f[p_, e_, k_] := If[k == 0, e + 1, (p^(k*e + k) - 1)/(p^k - 1)]; f[2, e_, k_] := If[k == 0, e - 3, -((2^(k - 1) - 1)*2^(k*e + 1) + 2^(k + 1) - 1)/(2^k - 1)]; T[1, k_] = 1; T[n_, k_] := Times @@ (f[First[#], Last[#], k] & /@ FactorInteger[n]); Table[T[n - k, k], {n, 1, 11}, {k, n - 1, 0, -1}] // Flatten (* Amiram Eldar, Nov 22 2022 *)
PROG
(PARI) T(n, k)={sumdiv(n, d, (-1)^(n/d+d)*d^k)}
for(n=1, 10, for(k=0, 8, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 26 2018
KEYWORD
sign,tabl
AUTHOR
Ilya Gutkovskiy, Nov 26 2018
STATUS
approved
G.f.: Sum_{k>0} -(-x)^k / (1 + x^k).
+10
6
1, -2, 2, -1, 2, -4, 2, 0, 3, -4, 2, -2, 2, -4, 4, 1, 2, -6, 2, -2, 4, -4, 2, 0, 3, -4, 4, -2, 2, -8, 2, 2, 4, -4, 4, -3, 2, -4, 4, 0, 2, -8, 2, -2, 6, -4, 2, 2, 3, -6, 4, -2, 2, -8, 4, 0, 4, -4, 2, -4, 2, -4, 6, 3, 4, -8, 2, -2, 4, -8, 2, 0, 2, -4, 6, -2, 4
OFFSET
1,2
FORMULA
a(n) = number of divisors of n minus 4 times number of divisors of n of the form 4*k+2.
a(n) = Sum_{d|n} (-1)^(d+n/d). - N. J. A. Sloane, Nov 23 2018
Multiplicative with a(2^e) = e-3 if e>0, a(p^e) = e+1 if p>2.
Moebius transform is period 4 sequence [1, -3, 1, 1, ...].
G.f.: Sum_{k>0} x^k / (1 - x^k) - 4 * x^(4*k + 2) / (1 - x^(4*k + 2)).
a(2*n - 1) = A099774(n).
Dirichlet g.f.: zeta(s)^2*(1-2^(-s+1))^2 = eta^2(s) (the Dirichlet eta). - Ralf Stephan, Mar 27 2015
a(16n+8) = a(A051062(n)) = 0. - Michel Marcus, Mar 27 2015
O.g.f.: Sum_{n >= 1} (-1)^(n*(n+1))*x^(n^2)*(1 - x^n)/(1 + x^n). - Peter Bala, Mar 11 2019
Conjecture: a(n) = (7 - 2*(-1)^n)*tau(n) - 4*tau(2*n) = 5*tau(n) - (3 + (-1)^n)*tau(2*n), where tau = A000005. - Velin Yanev, Dec 17 2019
The proof of the above conjecture easily follows from the fact that both a(n) and tau(n) are multiplicative arithmetical functions and tau(p^e) = e + 1 for prime p. - Peter Bala, Jan 28 2022
a(n) = A000005(n) if n is odd, and A000005(n) * (A007814(n)-3)/(A007814(n)+1) if n is even. - Amiram Eldar, Sep 18 2023
EXAMPLE
G.f. = x - 2*x^2 + 2*x^3 - x^4 + 2*x^5 - 4*x^6 + 2*x^7 + 3*x^9 - 4*x^10 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ Sum[ -(-x)^k / (1 + x^k), {k, 1, n}], {x, 0, n}];
a[ n_] := If[ n < 1, 0, DivisorSum[ n, (-1)^(# + n/#) &]]; (* Michael Somos, Jan 08 2015 *)
a[n_] := Module[{e = IntegerExponent[n, 2]}, DivisorSigma[0, n] * If[e == 0, 1, (e-3)/(e+1)]]; Array[a, 100] (* Amiram Eldar, Sep 18 2023 *)
PROG
(PARI) {a(n) = if( n<1, 0, sumdiv(n, k, (-1)^(k + n/k)))};
(PARI) {a(n) = if( n<1, 0, numdiv(n) - 4 * sumdiv( n, k, k%4 == 2))};
(PARI) {a(n) = my(e); if( n<1, 0, e = valuation( n, 2); numdiv( n/2^e) * if( e>0, e-3, 1))};
(PARI) a(n)=direuler(p=1, n, if(p==2, (1-2*X)^2/(1-X)^2, 1/(1-X)^2))[n] /* Ralf Stephan, Mar 27 2015 */
KEYWORD
sign,easy,mult
AUTHOR
Michael Somos, Nov 02 2013
STATUS
approved
Multiplicative with a(n) = n if n is odd and a(2^s)=2.
+10
3
1, 2, 3, 2, 5, 6, 7, 2, 9, 10, 11, 6, 13, 14, 15, 2, 17, 18, 19, 10, 21, 22, 23, 6, 25, 26, 27, 14, 29, 30, 31, 2, 33, 34, 35, 18, 37, 38, 39, 10, 41, 42, 43, 22, 45, 46, 47, 6, 49, 50, 51, 26, 53, 54, 55, 14, 57, 58, 59, 30, 61, 62, 63, 2, 65, 66, 67, 34
OFFSET
1,2
COMMENTS
If n = 2^s*m with m odd and s > 0 then a(n) = 2*m.
FORMULA
From Peter Bala, Feb 21 2019: (Start)
a(n) = n*gcd(n,2)/gcd(n,2^n).
a(2*n) = 2*A000265(2*n); a(2*n+1) = A000265(2*n+1).
O.g.f.: x*(1 + 4*x + x^2)/(1 - x^2)^2 - 2*( F(x^2) + F(x^4) + F(x^8) + ... ), where F(x) = x/(1 - x)^2.
O.g.f. for reciprocals: Sum_{n >= 1} (1/a(n))*x^n = (3/4)*L(x) - (1/4)*L(-x) + (1/4)*( L(x^2) + L(x^4) + L(x^8) + ... ), where L(x) = log(1/(1 - x)).
(End)
From Peter Bala, Mar 09 2019: (Start)
a(n) = (-1)^(n+1)*Sum_ {d divides n} (-1)^(d+n/d)*phi(d), where phi(n) = A000010(n) is the Euler totient function. Cf. the identity n = Sum_ {d divides n} phi(d). Cf. A046897 and A321558.
O.g.f.: Sum_{n >= 1} phi(n)*x^n/(1 + (-x)^n). (End)
From Amiram Eldar, Nov 28 2022: (Start)
Dirichlet g.f.: zeta(s-1)*(1 + 1/2^(s-1) - 2/(2^s-1)).
Sum_{k=1..n} a(k) ~ (5/12) * n^2. (End)
MATHEMATICA
G[n_] := If[Mod[n, 2] == 0, n/2^(FactorInteger[n][[1, 2]] - 1), n]; Table[G[n], {n, 1, 70}]
PROG
(PARI) a(n)=n>>max(valuation(n, 2)-1, 0) \\ Charles R Greathouse IV, Jun 28 2015
CROSSREFS
KEYWORD
nonn,mult,easy
AUTHOR
STATUS
approved
a(n) = Sum_{d divides n} (-1)^(n + 1 + d + n/d) * d^2.
+10
2
1, 5, 10, 13, 26, 50, 50, 45, 91, 130, 122, 130, 170, 250, 260, 173, 290, 455, 362, 338, 500, 610, 530, 450, 651, 850, 820, 650, 842, 1300, 962, 685, 1220, 1450, 1300, 1183, 1370, 1810, 1700, 1170, 1682, 2500, 1850, 1586, 2366, 2650, 2210, 1730, 2451, 3255
OFFSET
1,2
LINKS
FORMULA
Multiplicative with a(2^e) = (2^(2*e+1) + 7)/3 = A321358(e) if e>0, else a(p^e) = (p^(2*e+2) - 1)/(p^2 - 1).
G.f.: Sum_{k>=1} k^2 * x^k/(1 + (-x)^k) = Sum_{k>=1} x^k*(1 - (-x)^k)/(1 + (-x)^k)^3.
a(n) = -(-1)^n*A321558(n). a(2*n - 1) = A001157(2*n - 1) = A099978(n). a(4*n + 2) = A001157(4*n + 2).
Sum_{k=1..n} a(k) ~ c * n^3, where c = 7*zeta(3)/24 = 0.350599... . - Amiram Eldar, Nov 01 2022
EXAMPLE
G.f. = x + 5*x^2 + 10*x^3 + 13*x^4 + 26*x^5 + 50*x^6 + 50*x^7 + 45*x^8 + ...
MATHEMATICA
a[ n_] := If[ n < 1, 0, DivisorSum[n, (-1)^(n + 1 + # + n/#) #^2 &];
PROG
(PARI) {a(n) = sumdiv(n, d, (-1)^(n + 1 + n\d + d)*d^2)};
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
Michael Somos, Oct 24 2019
STATUS
approved
Expansion of Sum_{k>=1} k^2 * x^(k^2) / (1 + x^k).
+10
2
1, -1, 1, 3, 1, -5, 1, 3, 10, -5, 1, -6, 1, -5, 10, 19, 1, -14, 1, -13, 10, -5, 1, 10, 26, -5, 10, -13, 1, -39, 1, 19, 10, -5, 26, 14, 1, -5, 10, -6, 1, -50, 1, -13, 35, -5, 1, 46, 50, -30, 10, -13, 1, -50, 26, -30, 10, -5, 1, -11, 1, -5, 59, 83, 26, -50, 1, -13, 10, -79
OFFSET
1,4
FORMULA
a(n) = Sum_{d|n, d <= sqrt(n)} (-1)^(d + n/d) * d^2.
MATHEMATICA
nmax = 70; CoefficientList[Series[Sum[k^2 x^(k^2)/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
Table[DivisorSum[n, (-1)^(# + n/#) #^2 &, # <= Sqrt[n] &], {n, 1, 70}]
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, May 07 2024
STATUS
approved

Search completed in 0.006 seconds