a(n) = Sum_{d divides n} (-1)^(n + J_3(d)/phi(d)), where the Jordan totient function J_3(n) = A059477(n). - Peter Bala, Jan 23 2024
sign,easy,mult,changed
editing
approved
a(n) = Sum_{d divides n} (-1)^(n + J_3(d)/phi(d)), where the Jordan totient function J_3(n) = A059477(n). - Peter Bala, Jan 23 2024
sign,easy,mult,changed
editing
approved
a(n) = Sum_{d divides n} (-1)^(n + J_3(d)/phi(d)), where the Jordan totient function J_3(n) = A059477(n). - Peter Bala, Jan 23 2024
approved
editing
reviewed
approved
proposed
reviewed
editing
proposed
P. Peter Bala, <a href="/A067856/a067856_1.pdf">A signed Dirichlet product of arithmetical functions</a>, 2019.
<a href="/index/Ge#Glaisher">Index entries for sequences mentioned by Glaisher</a>.
a(n) = A000005(n) if n is odd, and A000005(n) * (A007814(n)-3)/(A007814(n)+1) if n is even. - Amiram Eldar, Sep 18 2023
a[n_] := Module[{e = IntegerExponent[n, 2]}, DivisorSigma[0, n] * If[e == 0, 1, (e-3)/(e+1)]]; Array[a, 100] (* Amiram Eldar, Sep 18 2023 *)
sign,easy,mult
approved
editing