[go: up one dir, main page]

login
A321562
a(n) = Sum_{d divides n} (-1)^(d + n/d) * d^6.
3
1, -65, 730, -4033, 15626, -47450, 117650, -257985, 532171, -1015690, 1771562, -2944090, 4826810, -7647250, 11406980, -16510913, 24137570, -34591115, 47045882, -63019658, 85884500, -115151530, 148035890, -188329050, 244156251, -313742650
OFFSET
1,2
FORMULA
G.f.: Sum_{k>=1} (-1)^(k+1)*k^6*x^k/(1 + x^k). - Ilya Gutkovskiy, Nov 27 2018
Multiplicative with a(2^e) = -(31*2^(6*e+1) + 127)/63, and a(p^e) = (p^(6*e+6) - 1)/(p^6 - 1) for p > 2. - Amiram Eldar, Nov 22 2022
MATHEMATICA
a[n_] := DivisorSum[n, (-1)^(# + n/#)*#^6 &]; Array[a, 50] (* Amiram Eldar, Nov 27 2018 *)
PROG
(PARI) apply( A321562(n)=sumdiv(n, d, (-1)^(n\d-d)*d^6), [1..30]) \\ M. F. Hasler, Nov 26 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&+[(-1)^(k+1)*k^6*x^k/(1 + x^k) : k in [1..2*m]]) )); // G. C. Greubel, Nov 28 2018
(Sage) s=(sum((-1)^(k+1)*k^6*x^k/(1 + x^k) for k in (1..50))).series(x, 50); a = s.coefficients(x, sparse=False); a[1:] # G. C. Greubel, Nov 28 2018
CROSSREFS
Column k=6 of A322083.
Cf. A321543 - A321565, A321807 - A321836 for similar sequences.
Sequence in context: A353939 A351269 A088677 * A034680 A351301 A017675
KEYWORD
sign,mult
AUTHOR
N. J. A. Sloane, Nov 23 2018
STATUS
approved