[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Revision History for A304639 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
G.f. A(x) satisfies: 1 = Sum_{n>=0} ( 1/(1-x)^n - A(x) )^n.
(history; published version)
#23 by Paul D. Hanna at Mon Dec 27 20:42:00 EST 2021
STATUS

editing

approved

#22 by Paul D. Hanna at Mon Dec 27 20:41:35 EST 2021
FORMULA

G.f.: A(x) = 1 + x + 2*x^2 + 11*x^3 + 117*x^4 + 1735*x^5 + 31853*x^6 + 689043*x^7 + 17079221*x^8 + 476238926*x^9 + 14742680162*x^10 + 501584454703*x^11 + ...

is such that

1 = 1 + (1/(1-x) - A(x)) + (1/(1-x)^2 - A(x))^2 + (1/(1-x)^3 - A(x))^3 + (1/(1-x)^4 - A(x))^4 + (1/(1-x)^5 - A(x))^5 + (1/(1-x)^6 - A(x))^6 + (1/(1-x)^7 - A(x))^7 + ...

Also,

1 = 1/(1 + A(x)) + (1-x)/((1-x) + A(x))^2 + (1-x)^2/((1-x)^2 + A(x))^3 + (1-x)^3/((1-x)^3 + A(x))^4 + (1-x)^4/((1-x)^4 + A(x))^5 + (1-x)^5/((1-x)^5 + A(x))^6 + (1-x)^6/((1-x)^6 + A(x))^7 + ...

PARTICULAR VALUES.

Although the power series A(x) diverges at x = -1, it may be evaluated formally.

Let t = A(-1) = 0.5452189736359494312349502450349441069576127988881794567242641...

then t satisfies

(1) 1 = Sum_{n>=0} ( 1/2^n - t )^n.

(2) 1 = Sum_{n>=0} ( 1 - 2^n*t )^n / 2^(n^2).

(3) 1 = Sum_{n>=0} 2^n / ( 2^n + t )^(n+1).

EXAMPLE

G.f.: A(x) = 1 + x + 2*x^2 + 11*x^3 + 117*x^4 + 1735*x^5 + 31853*x^6 + 689043*x^7 + 17079221*x^8 + 476238926*x^9 + 14742680162*x^10 + 501584454703*x^11 + ...

is such that

1 = 1 + (1/(1-x) - A(x)) + (1/(1-x)^2 - A(x))^2 + (1/(1-x)^3 - A(x))^3 + (1/(1-x)^4 - A(x))^4 + (1/(1-x)^5 - A(x))^5 + (1/(1-x)^6 - A(x))^6 + (1/(1-x)^7 - A(x))^7 + ...

Also,

1 = 1/(1 + A(x)) + (1-x)/((1-x) + A(x))^2 + (1-x)^2/((1-x)^2 + A(x))^3 + (1-x)^3/((1-x)^3 + A(x))^4 + (1-x)^4/((1-x)^4 + A(x))^5 + (1-x)^5/((1-x)^5 + A(x))^6 + (1-x)^6/((1-x)^6 + A(x))^7 + ...

PARTICULAR VALUES.

Although the power series A(x) diverges at x = -1, it may be evaluated formally.

Let t = A(-1) = 0.5452189736359494312349502450349441069576127988881794567242641...

then t satisfies

(1) 1 = Sum_{n>=0} ( 1/2^n - t )^n.

(2) 1 = Sum_{n>=0} ( 1 - 2^n*t )^n / 2^(n^2).

(3) 1 = Sum_{n>=0} 2^n / ( 2^n + t )^(n+1).

STATUS

approved

editing

Discussion
Mon Dec 27
20:42
Paul D. Hanna: Moved misplaced examples to the example section.
#21 by N. J. A. Sloane at Fri Dec 17 01:03:49 EST 2021
STATUS

editing

approved

#20 by N. J. A. Sloane at Fri Dec 17 01:03:45 EST 2021
FORMULA

G.f. A(x) satisfies:

(1) 1 = Sum_{n>=0} ( 1/(1-x)^n - A(x) )^n.

(2) 1 = Sum_{n>=0} ( 1 - (1-x)^n*A(x) )^n / (1-x)^(n^2).

(3) 1 = Sum_{n>=0} (1-x)^n / ( (1-x)^n + A(x) )^(n+1).

G.f.: A(x) = 1 + x + 2*x^2 + 11*x^3 + 117*x^4 + 1735*x^5 + 31853*x^6 + 689043*x^7 + 17079221*x^8 + 476238926*x^9 + 14742680162*x^10 + 501584454703*x^11 + ...

is such that

1 = 1 + (1/(1-x) - A(x)) + (1/(1-x)^2 - A(x))^2 + (1/(1-x)^3 - A(x))^3 + (1/(1-x)^4 - A(x))^4 + (1/(1-x)^5 - A(x))^5 + (1/(1-x)^6 - A(x))^6 + (1/(1-x)^7 - A(x))^7 + ...

Also,

1 = 1/(1 + A(x)) + (1-x)/((1-x) + A(x))^2 + (1-x)^2/((1-x)^2 + A(x))^3 + (1-x)^3/((1-x)^3 + A(x))^4 + (1-x)^4/((1-x)^4 + A(x))^5 + (1-x)^5/((1-x)^5 + A(x))^6 + (1-x)^6/((1-x)^6 + A(x))^7 + ...

PARTICULAR VALUES.

Although the power series A(x) diverges at x = -1, it may be evaluated formally.

Let t = A(-1) = 0.5452189736359494312349502450349441069576127988881794567242641...

then t satisfies

(1) 1 = Sum_{n>=0} ( 1/2^n - t )^n.

(2) 1 = Sum_{n>=0} ( 1 - 2^n*t )^n / 2^(n^2).

(3) 1 = Sum_{n>=0} 2^n / ( 2^n + t )^(n+1).

EXAMPLE

G.f. A(x) satisfies:

(1) 1 = Sum_{n>=0} ( 1/(1-x)^n - A(x) )^n.

(2) 1 = Sum_{n>=0} ( 1 - (1-x)^n*A(x) )^n / (1-x)^(n^2).

(3) 1 = Sum_{n>=0} (1-x)^n / ( (1-x)^n + A(x) )^(n+1).

MAPLE

G.f.: A(x) = 1 + x + 2*x^2 + 11*x^3 + 117*x^4 + 1735*x^5 + 31853*x^6 + 689043*x^7 + 17079221*x^8 + 476238926*x^9 + 14742680162*x^10 + 501584454703*x^11 + ...

such that

1 = 1 + (1/(1-x) - A(x)) + (1/(1-x)^2 - A(x))^2 + (1/(1-x)^3 - A(x))^3 + (1/(1-x)^4 - A(x))^4 + (1/(1-x)^5 - A(x))^5 + (1/(1-x)^6 - A(x))^6 + (1/(1-x)^7 - A(x))^7 + ...

Also,

1 = 1/(1 + A(x)) + (1-x)/((1-x) + A(x))^2 + (1-x)^2/((1-x)^2 + A(x))^3 + (1-x)^3/((1-x)^3 + A(x))^4 + (1-x)^4/((1-x)^4 + A(x))^5 + (1-x)^5/((1-x)^5 + A(x))^6 + (1-x)^6/((1-x)^6 + A(x))^7 + ...

PARTICULAR VALUES.

Although the power series A(x) diverges at x = -1, it may be evaluated formally.

Let t = A(-1) = 0.5452189736359494312349502450349441069576127988881794567242641...

then t satisfies

(1) 1 = Sum_{n>=0} ( 1/2^n - t )^n.

(2) 1 = Sum_{n>=0} ( 1 - 2^n*t )^n / 2^(n^2).

(3) 1 = Sum_{n>=0} 2^n / ( 2^n + t )^(n+1).

STATUS

proposed

editing

#19 by Jon E. Schoenfield at Thu Dec 16 22:25:57 EST 2021
STATUS

editing

proposed

#18 by Jon E. Schoenfield at Thu Dec 16 22:24:49 EST 2021
MAPLE

1 = 1 + (1/(1-x) - A(x)) + (1/(1-x)^2 - A(x))^2 + (1/(1-x)^3 - A(x))^3 + (1/(1-x)^4 - A(x))^4 + (1/(1-x)^5 - A(x))^5 + (1/(1-x)^6 - A(x))^6 + (1/(1-x)^7 - A(x))^7 + ...

STATUS

approved

editing

Discussion
Thu Dec 16
22:25
Jon E. Schoenfield: I don't know Maple, but it's very hard for me to believe that the Maple section here contains real Maple code. (Maybe artificial maple, with artificial sweeteners or something...)  ?:-/
#17 by Vaclav Kotesovec at Wed Oct 14 08:03:53 EDT 2020
STATUS

editing

approved

#16 by Vaclav Kotesovec at Wed Oct 14 08:03:34 EDT 2020
FORMULA

a(n) ~ c * d^n * n! / sqrt(n), where d = A317855 = 3.16108865386542881383... and c = 0.16107844724485... - Vaclav Kotesovec, Oct 14 2020

STATUS

approved

editing

#15 by Paul D. Hanna at Thu Jun 20 22:49:50 EDT 2019
STATUS

editing

approved

#14 by Paul D. Hanna at Thu Jun 20 22:49:48 EDT 2019
CROSSREFS
STATUS

approved

editing