[go: up one dir, main page]

login
Search: a138178 -id:a138178
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = 2*(a(n-1) + (n-1)*a(n-2)) for n >= 2 with a(0) = 1.
(Formerly M1648 N0645)
+10
50
1, 2, 6, 20, 76, 312, 1384, 6512, 32400, 168992, 921184, 5222208, 30710464, 186753920, 1171979904, 7573069568, 50305536256, 342949298688, 2396286830080, 17138748412928, 125336396368896, 936222729254912, 7136574106003456, 55466948299223040, 439216305474605056, 3540846129311916032
OFFSET
0,2
COMMENTS
Number of solutions to the rook problem on a 2n X 2n board having a certain symmetry group (see Robinson for details).
Also the value of the n-th derivative of exp(x^2) evaluated at 1. - N. Calkin, Apr 22 2010
For n >= 1, a(n) is also the sum of the degrees of the irreducible representations of the group of n X n signed permutation matrices (described in sequence A066051). The similar sum for the "ordinary" symmetric group S_n is in sequence A000085. - Sharon Sela (sharonsela(AT)hotmail.com), Jan 12 2002
It appears that this is also the number of permutations of 1, 2, ..., n+1 such that each term (after the first) is within 2 of some preceding term. Verified for n+1 <= 6. E.g., a(4) = 20 because of the 24 permutations of 1, 2, 3, 4, the only ones not permitted are 1, 4, 2, 3; 1, 4, 3, 2; 4, 1, 2, 3; and 4, 1, 3, 2. - Gerry Myerson, Aug 06 2003
Hankel transform is A108400. - Paul Barry, Feb 11 2008
From Emeric Deutsch, Jun 19 2010: (Start)
Number of symmetric involutions of [2n]. Example: a(2)=6 because we have 1234, 2143, 1324, 3412, 4231, and 4321. See the Egge reference, pp. 419-420.
Number of symmetric involutions of [2n+1]. Example: a(2)=6 because we have 12345, 14325, 21354, 45312, 52341, and 54321. See the Egge reference, pp. 419-420.
(End)
Binomial convolution of sequence A000085: a(n) = Sum_{k=0..n} binomial(n,k)*A000085(k)*A000085(n-k). - Emanuele Munarini, Mar 02 2016
The sequence can be obtained from the infinite product of 2 X 2 matrices [(1,N); (1,1)] by extracting the upper left terms, where N = (1, 3, 5, ...), the odd integers. - Gary W. Adamson, Jul 28 2016
Apparently a(n) is the number of standard domino tableaux of size 2n, where a domino tableau is a generalized Young tableau in which all rows and columns are weakly increasing and all regions are dominos. - Gus Wiseman, Feb 25 2018
REFERENCES
D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 3, Sect 5.1.4 Exer. 31.
L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181.
R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976).
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Y. Alp and E. G. Kocer, Exponential Almost-Riordan Arrays, Results Math 79, 173 (2024). See page 10.
Arvind Ayyer, Hiranya Kishore Dey, and Digjoy Paul, How large is the character degree sum compared to the character table sum for a finite group?, arXiv:2406.06036 [math.RT], 2024. See p. 10.
C. Banderier, M. Bousquet-Mélou, A. Denise, P. Flajolet, D. Gardy and D. Gouyou-Beauchamps, Generating functions for generating trees, Discrete Mathematics 246(1-3), March 2002, pp. 29-55.
Paul Barry, The Gamma-Vectors of Pascal-like Triangles Defined by Riordan Arrays, arXiv:1804.05027 [math.CO], 2018.
R. A. Brualdi, Shi-Mie Ma, Enumeration of involutions by descents and symmetric matrices, Eur. J. Combin. 43 (2015) 220-228
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
C.-O. Chow, Counting involutory, unimodal and alternating signed permutations, Discr. Math. 306 (2006), 2222-2228.
R. Donaghey, Binomial self-inverse sequences and tangent coefficients, J. Combin. Theory, Series A, 21 (1976), 155-163.
Eric S. Egge, Restricted symmetric permutations, Ann. Combin., 11 (2007), 405-434.
Adam M. Goyt and Lara K. Pudwell, Avoiding colored partitions of two elements in the pattern sense, arXiv preprint arXiv:1203.3786 [math.CO], 2012. - From N. J. A. Sloane, Sep 17 2012
T. Halverson and M. Reeks, Gelfand Models for Diagram Algebras, arXiv preprint arXiv:1302.6150 [math.RT], 2013.
Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181. [Annotated scan of pages 180 and 181 only]
Yen-chi R. Lin, Asymptotic Formula for Symmetric Involutions, arXiv:1310.0988 [math.CO], 2013.
E. Lucas, Théorie des Nombres, Gauthier-Villars, Paris, 1891, Vol. 1, p. 221.
E. Lucas, Théorie des nombres (annotated scans of a few selected pages)
J. Riordan, Letter to N. J. A. Sloane, Feb 03 1975 (with notes by njas)
D. P. Roberts and A. Venkatesh, Hurwitz monodromy and full number fields, 2014.
FORMULA
a(n) = Sum_{m=0..n} |A060821(n,m)| = H(n,-i)*i^n, with the Hermite polynomials H(n,x); i.e., these are row sums of the unsigned triangle A060821.
E.g.f.: exp(x*(x + 2)).
a(n) = 2 * A000902(n) for n >= 1.
a(n) = Sum_{k=0..n} binomial(n,2k)*binomial(2k,k)*k!*2^(n-2k). - N. Calkin, Apr 22 2010
Binomial transform of A047974. - Paul Barry, May 09 2003
a(n) = Sum_{k=0..n} Stirling1(n, k)*2^k*Bell(k). - Vladeta Jovovic, Oct 01 2003
From Paul Barry, Aug 29 2005: (Start)
a(n) = Sum_{k=0..floor(n/2)} A001498(n-k, k) * 2^(n-k).
a(n) = Sum_{k=0..n} A001498((n+k)/2, (n-k)/2) * 2^((n+k)/2) * (1+(-1)^(n-k))/2. (End)
For asymptotics, see the Robinson paper. [This is disputed by Yen-chi R. Lin. See below, Sep 30 2013.]
a(n) = Sum_{k=0..floor(n/2)} 2^(n-2*k) * C(n,2*k) * (2*k)!/k!. - Paul Barry, Feb 11 2008
G.f.: 1/(1 - 2*x - 2*x^2/(1 - 2*x - 4*x^2/(1 - 2*x - 6*x^2/(1 - 2*x - 8*x^2/(1 - ... (continued fraction). - Paul Barry, Feb 25 2010
E.g.f.: exp(x^2 + 2*x) = Q(0); Q(k) = 1 + (x^2 + 2*x)/(2*k + 1 - (x^2 + 2*x)*(2*k + 1)/((x^2 + 2*x) + (2*k + 2)/Q(k+1)))); (continued fraction). - Sergei N. Gladkovskii, Nov 24 2011
G.f.: 1/Q(0), where Q(k) = 1 + 2*x*k - x - x/(1 - 2*x*(k + 1)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 07 2013
a(n) = (2*n/e)^(n/2) * exp(sqrt(2*n)) / sqrt(2*e) * (1 + sqrt(2/n)/3 + O(n^(-1)). - Yen-chi R. Lin, Sep 30 2013
0 = a(n)*(2*a(n+1) + 2*a(n+2) - a(n+3)) + a(n+1)*(-2*a(n+1) + a(n+2)) for all n >= 0. - Michael Somos, Oct 23 2015
a(n) = Sum_{k=0..floor(n/2)} 2^(n-k)*B(n, k), where B are the Bessel numbers A100861. - Peter Luschny, Jun 04 2021
EXAMPLE
G.f. = 1 + 2*x + 6*x^2 + 20*x^3 + 76*x^4 + 312*x^5 + 1384*x^6 + 6512*x^7 + ...
The a(3) = 20 domino tableaux:
1 1 2 2 3 3
.
1 2 2 3 3
1
.
1 2 3 3 1 1 3 3 1 1 2 2
1 2 2 2 3 3
.
1 1 3 3 1 1 2 2
2 3
2 3
.
1 2 3 1 2 2 1 1 3
1 2 3 1 3 3 2 2 3
.
1 3 3 1 2 2
1 1
2 3
2 3
.
1 2 1 1 1 1
1 2 2 3 2 2
3 3 2 3 3 3
.
1 3 1 2 1 1
1 3 1 2 2 2
2 3 3
2 3 3
.
1 1
2
2
3
3
.
1
1
2
2
3
3 - Gus Wiseman, Feb 25 2018
MAPLE
# For Maple program see A000903.
seq(simplify((-I)^n*HermiteH(n, I)), n=0..25); # Peter Luschny, Oct 23 2015
MATHEMATICA
a[n_] := Sum[ 2^k*StirlingS1[n, k]*BellB[k], {k, 0, n}]; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Nov 17 2011, after Vladeta Jovovic *)
RecurrenceTable[{a[0]==1, a[1]==2, a[n]==2(a[n-1]+(n-1)a[n-2])}, a, {n, 30}] (* Harvey P. Dale, Aug 04 2012 *)
Table[Abs[HermiteH[n, I]], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 22 2015 *)
a[ n_] := Sum[ 2^(n - 2 k) n! / (k! (n - 2 k)!), {k, 0, n/2}]; (* Michael Somos, Oct 23 2015 *)
PROG
(PARI) {a(n) = if( n<0, 0, n! * polcoeff( exp(2*x + x^2 + x * O(x^n)), n))}; /* Michael Somos, Fep 08 2004 */
(PARI) {a(n) = if( n<2, max(0, n+1), 2*a(n-1) + (2*n - 2) * a(n-2))}; /* Michael Somos, Fep 08 2004 */
(Haskell)
a000898 n = a000898_list !! n
a000898_list = 1 : 2 : (map (* 2) $
zipWith (+) (tail a000898_list) (zipWith (*) [1..] a000898_list))
-- Reinhard Zumkeller, Oct 10 2011
(PARI) x='x+O('x^66); Vec(serlaplace(exp(2*x+x^2))) \\ Joerg Arndt, Oct 04 2013
(PARI) {a(n) = sum(k=0, n\2, 2^(n - 2*k) * n! / (k! * (n - 2*k)!))}; /* Michael Somos, Oct 23 2015 */
(Maxima) makelist((%i)^n*hermite(n, -%i), n, 0, 12); /* Emanuele Munarini, Mar 02 2016 */
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Feb 21 2001
Initial condition a(0)=1 added to definition by Jon E. Schoenfield, Oct 01 2013
More terms from Joerg Arndt, Oct 04 2013
STATUS
approved
Number of normal semistandard Young tableaux whose shape is the integer partition with Heinz number n.
+10
49
1, 1, 2, 1, 4, 4, 8, 1, 6, 12, 16, 6, 32, 32, 28, 1, 64, 16, 128, 24, 96, 80, 256, 8, 44, 192, 22, 80, 512, 96, 1024, 1, 288, 448, 224, 30, 2048, 1024, 800, 40, 4096, 400, 8192, 240, 168, 2304, 16384, 10, 360, 204, 2112, 672, 32768, 68, 832, 160, 5376, 5120
OFFSET
1,3
COMMENTS
A tableau is normal if its entries span an initial interval of positive integers. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
REFERENCES
Richard P. Stanley, Enumerative Combinatorics Volume 2, Cambridge University Press, 1999, Chapter 7.10.
LINKS
FindStat - Combinatorial Statistic Finder, Semistandard Young tableaux
FORMULA
Let b(n) = Sum_{d|n, d>1} b(n * d' / d) where if d = Product_i prime(s_i)^m(i) then d' = Product_i prime(s_i - 1)^m(i) and prime(0) = 1. Then a(n) = b(conj(n)) where conj = A122111.
EXAMPLE
The a(9) = 6 tableaux:
1 3 1 2 1 2 1 2 1 1 1 1
2 4 3 4 3 3 2 3 2 3 2 2
MATHEMATICA
conj[y_List]:=If[Length[y]===0, y, Table[Length[Select[y, #>=k&]], {k, 1, Max[y]}]];
conj[n_Integer]:=Times@@Prime/@conj[If[n===1, {}, Join@@Cases[FactorInteger[n]//Reverse, {p_, k_}:>Table[PrimePi[p], {k}]]]];
ssyt[n_]:=If[n===1, 1, Sum[ssyt[n/q*Times@@Cases[FactorInteger[q], {p_, k_}:>If[p===2, 1, NextPrime[p, -1]^k]]], {q, Rest[Divisors[n]]}]];
Table[ssyt[conj[n]], {n, 50}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 14 2018
STATUS
approved
Number of normal generalized Young tableaux, of shape the integer partition with Heinz number n, with all rows and columns weakly increasing and all regions connected skew partitions.
+10
39
1, 1, 2, 2, 4, 5, 8, 4, 11, 12, 16, 12, 32, 28, 31, 8, 64, 31, 128, 33, 82, 64, 256, 28, 69, 144, 69, 86, 512, 105, 1024, 16, 208, 320, 209, 82, 2048, 704, 512, 86, 4096, 318, 8192, 216, 262, 1536, 16384, 64, 465, 262, 1232, 528, 32768, 209, 588, 245, 2912, 3328
OFFSET
1,3
COMMENTS
The diagram of a connected skew partition is required to be connected as a polyomino but can have empty rows or columns. A generalized Young tableau of shape y is an array obtained by replacing the dots in the Ferrers diagram of y with positive integers. A tableau is normal if its entries span an initial interval of positive integers. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
EXAMPLE
The a(9) = 11 tableaux:
1 1
1 1
.
2 1 1 1 1 1 1 2
1 1 1 2 2 2 1 2
.
1 1 1 2 1 2 1 3
2 3 1 3 3 3 2 3
.
1 2 1 3
3 4 2 4
MATHEMATICA
undcon[y_]:=Select[Tuples[Range[0, #]&/@y], Function[v, GreaterEqual@@v&&With[{r=Select[Range[Length[y]], y[[#]]=!=v[[#]]&]}, Or[Length[r]<=1, And@@Table[v[[i]]<y[[i+1]], {i, Range[Min@@r, Max@@r-1]}]]]]];
cos[y_]:=cos[y]=With[{sam=Most[undcon[y]]}, If[Length[sam]===0, If[Total[y]===0, {{}}, {}], Join@@Table[Prepend[#, y]&/@cos[sam[[k]]], {k, 1, Length[sam]}]]];
primeMS[n_]:=If[n===1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Table[Length[cos[Reverse[primeMS[n]]]], {n, 50}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 25 2018
STATUS
approved
Number of non-isomorphic weight-n chains of distinct multisets whose dual is also a chain of distinct multisets.
+10
37
1, 1, 1, 4, 4, 9, 17, 28, 41, 75, 122, 192, 314, 484, 771, 1216, 1861, 2848, 4395, 6610, 10037
OFFSET
0,4
COMMENTS
The dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
From Gus Wiseman, Jan 17 2019: (Start)
Also the number of plane partitions of n with no repeated rows or columns. For example, the a(6) = 17 plane partitions are:
6 51 42 321
.
5 4 41 31 32 31 22 221 211
1 2 1 2 1 11 2 1 11
.
3 21 21 111
2 2 11 11
1 1 1 1
(End)
EXAMPLE
Non-isomorphic representatives of the a(1) = 1 through a(5) = 9 chains:
1: {{1}}
2: {{1,1}}
3: {{1,1,1}}
{{1,2,2}}
{{1},{1,1}}
{{2},{1,2}}
4: {{1,1,1,1}}
{{1,2,2,2}}
{{1},{1,1,1}}
{{2},{1,2,2}}
5: {{1,1,1,1,1}}
{{1,1,2,2,2}}
{{1,2,2,2,2}}
{{1},{1,1,1,1}}
{{2},{1,1,2,2}}
{{2},{1,2,2,2}}
{{1,1},{1,1,1}}
{{1,2},{1,2,2}}
{{2,2},{1,2,2}}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
ptnplane[n_]:=Union[Map[Reverse@*primeMS, Join@@Permutations/@facs[n], {2}]];
Table[Sum[Length[Select[ptnplane[Times@@Prime/@y], And[UnsameQ@@#, UnsameQ@@Transpose[PadRight[#]], And@@GreaterEqual@@@#, And@@(GreaterEqual@@@Transpose[PadRight[#]])]&]], {y, IntegerPartitions[n]}], {n, 10}] (* Gus Wiseman, Jan 18 2019 *)
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Sep 25 2018
EXTENSIONS
a(11)-a(17) from Gus Wiseman, Jan 18 2019
a(18)-a(21) from Robert Price, Jun 21 2021
STATUS
approved
Number of planar partitions of n decreasing across rows.
(Formerly M1058)
+10
32
1, 1, 2, 4, 7, 12, 21, 34, 56, 90, 143, 223, 348, 532, 811, 1224, 1834, 2725, 4031, 5914, 8638, 12540, 18116, 26035, 37262, 53070, 75292, 106377, 149738, 209980, 293473, 408734, 567484, 785409, 1083817, 1491247, 2046233, 2800125, 3821959, 5203515
OFFSET
0,3
COMMENTS
Also number of planar partitions monotonically decreasing down antidiagonals (i.e., with b(n,k) <= b(n-1,k+1)). Transpose (to get planar partitions decreasing down columns), then take the conjugate of each row. - Franklin T. Adams-Watters, May 15 2006
Also number of partitions into one kind of 1's and 2's, two kinds of 3's and 4's, three kinds of 5's and 6's, etc. - Joerg Arndt, May 01 2013
Also count of semistandard Young tableaux with sum of entries equal to n (row sums of A228125). - Wouter Meeussen, Aug 11 2013
REFERENCES
D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; p. 133.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 1001 terms from Nathaniel Johnston)
M. S. Cheema and W. E. Conway, Numerical investigation of certain asymptotic results in the theory of partitions, Math. Comp., 26 (1972), 999-1005.
Wenjie Fang, Hsien-Kuei Hwang, and Mihyun Kang, Phase transitions from exp(n^(1/2)) to exp(n^(2/3)) in the asymptotics of banded plane partitions, arXiv:2004.08901 [math.CO], 2020.
B. Gordon and L. Houten, Notes on Plane Partitions I, J. of Comb. Theory, 4 (1968), 72-80.
B. Gordon and L. Houten, Notes on Plane Partitions II, J. of Comb. Theory, 4 (1968), 81-99.
Basil Gordon and Lorne Houten, Notes on plane partitions III (first page is available), Duke Math. J. Volume 36, Number 4 (1969), 801-824.
B. Gordon and L. Houten, Notes on Plane Partitions V, Journal of Combinatorial Theory, vol. 11, issue 2, 1971, pp. 157-168.
B. Gordon and L. Houten, Notes on Plane Partitions VI, Discrete Mathematics, vol. 26, issue 1, 1979, pp. 41-45.
Richard P. Stanley, Theory and Applications of Plane Partitions: Part 2, Studies in Appl. Math., 1 (1971), 259-279.
Richard P. Stanley, Theory and Application of Plane Partitions. Part 2, Studies in Appl. Math., 1 (1971), 259-279.
FORMULA
G.f.: Product_(1 - x^k)^{-c(k)}, c(k) = 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, ....
Euler transform of A110654. - Michael Somos, Sep 19 2006
a(n) ~ 2^(-3/4) * (3*Pi*Zeta(3))^(-1/2) * (n/Zeta(3))^(-49/72) * exp(3/2*Zeta(3) * (n/Zeta(3))^(2/3) + Pi^2*(n/Zeta(3))^(1/3)/24 - Pi^4/(3456*Zeta(3)) + Zeta'(-1)/2) [Basil Gordon and Lorne Houten, 1969]. - Vaclav Kotesovec, Feb 28 2015
EXAMPLE
From Gus Wiseman, Jan 17 2019: (Start)
The a(6) = 21 plane partitions with strictly decreasing columns (the count is the same as for strictly decreasing rows):
6 51 42 411 33 321 3111 222 2211 21111 111111
.
5 4 41 31 32 311 22 221 2111
1 2 1 2 1 1 11 1 1
.
3
2
1
(End)
MAPLE
with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d, j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:=etr(n-> `if`(modp(n, 2)=0, n, n+1)/2): seq(a(n), n=0..45); # Alois P. Heinz, Sep 08 2008
MATHEMATICA
CoefficientList[Series[Product[(1-x^k)^(-Ceiling[k/2]), {k, 1, 40}], {x, 0, 40}], x][[1 ;; 40]] (* Jean-François Alcover, Apr 18 2011, after Michael Somos *)
nmax=50; CoefficientList[Series[Product[1/(1-x^k)^((2*k+1-(-1)^k)/4), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 28 2015 *)
nmax = 50; CoefficientList[Series[Product[1/((1-x^(2*k-1))*(1-x^(2*k)))^k, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 02 2015 *)
PROG
(PARI) {a(n)=if(n<0, 0, polcoeff( prod(k=1, n, (1-x^k+x*O(x^n))^-ceil(k/2)), n))} /* Michael Somos, Sep 19 2006 */
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms from James A. Sellers, Feb 06 2000
Additional comments from Michael Somos, May 19 2000
STATUS
approved
Number of square matrices with nonnegative integer entries and without zero rows or columns such that sum of all entries is equal to n.
+10
27
1, 1, 3, 15, 107, 991, 11267, 151721, 2360375, 41650861, 821881709, 17932031225, 428630422697, 11138928977049, 312680873171465, 9428701154866535, 303957777464447449, 10431949496859168189, 379755239311735494421
OFFSET
0,3
LINKS
FORMULA
a(n) = (1/n!)*Sum_{k=0..n} (-1)^(n-k)*Stirling1(n,k)*A048144(k).
G.f.: Sum_{n>=0} Sum_{j=0..n} (-1)^(n-j)*binomial(n,j)*((1-x)^(-j)-1)^n.
a(n) ~ c * n! / (sqrt(n) * (log(2))^(2*n)), where c = 0.4670932578797312973586879293426... . - Vaclav Kotesovec, May 07 2014
In closed form, c = 2^(log(2)/2-2) / (log(2) * sqrt(Pi*(1-log(2)))). - Vaclav Kotesovec, May 03 2015
G.f.: Sum_{n>=0} (1-x)^n * (1 - (1-x)^n)^n. - Paul D. Hanna, Mar 26 2018
EXAMPLE
From Gus Wiseman, Nov 14 2018: (Start)
The a(3) = 15 matrices:
[3]
.
[2 0] [1 1] [1 1] [1 0] [1 0] [0 2] [0 1] [0 1]
[0 1] [1 0] [0 1] [1 1] [0 2] [1 0] [2 0] [1 1]
.
[1 0 0] [1 0 0] [0 1 0] [0 1 0] [0 0 1] [0 0 1]
[0 1 0] [0 0 1] [1 0 0] [0 0 1] [1 0 0] [0 1 0]
[0 0 1] [0 1 0] [0 0 1] [1 0 0] [0 1 0] [1 0 0]
(End)
MATHEMATICA
Table[1/n!*Sum[(-1)^(n-k)*StirlingS1[n, k]*Sum[(m!)^2*StirlingS2[k, m]^2, {m, 0, k}], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, May 07 2014 *)
multsubs[set_, k_]:=If[k==0, {{}}, Join@@Table[Prepend[#, set[[i]]]&/@multsubs[Drop[set, i-1], k-1], {i, Length[set]}]]; Table[Length[Select[multsubs[Tuples[Range[n], 2], n], Union[First/@#]==Union[Last/@#]==Range[Max@@First/@#]&]], {n, 5}] (* Gus Wiseman, Nov 14 2018 *)
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Aug 18 2006
STATUS
approved
Number of non-isomorphic self-dual set systems of weight n.
+10
26
1, 1, 1, 2, 2, 3, 6, 9, 16, 28, 47
OFFSET
0,4
COMMENTS
Also the number of (0,1) symmetric matrices up to row and column permutations with sum of elements equal to n and no zero rows or columns, in which the rows are all different.
The dual of a multiset partition has, for each vertex, one part consisting of the indices (or positions) of the parts containing that vertex, counted with multiplicity. For example, the dual of {{1,2},{2,2}} is {{1},{1,2,2}}.
The weight of a multiset partition is the sum of sizes of its parts. Weight is generally not the same as number of vertices.
EXAMPLE
Non-isomorphic representatives of the a(1) = 1 through a(8) = 16 set systems:
{{1}} {{1}{2}} {{2}{12}} {{1}{3}{23}} {{2}{13}{23}}
{{1}{2}{3}} {{1}{2}{3}{4}} {{1}{2}{4}{34}}
{{1}{2}{3}{4}{5}}
.
{{12}{13}{23}} {{13}{23}{123}} {{1}{13}{14}{234}}
{{3}{23}{123}} {{1}{23}{24}{34}} {{12}{13}{24}{34}}
{{1}{3}{24}{34}} {{1}{4}{34}{234}} {{1}{24}{34}{234}}
{{2}{4}{12}{34}} {{2}{13}{24}{34}} {{2}{14}{34}{234}}
{{1}{2}{3}{5}{45}} {{3}{4}{14}{234}} {{3}{4}{134}{234}}
{{1}{2}{3}{4}{5}{6}} {{1}{2}{4}{35}{45}} {{4}{13}{14}{234}}
{{1}{3}{5}{23}{45}} {{1}{2}{34}{35}{45}}
{{1}{2}{3}{4}{6}{56}} {{1}{2}{5}{45}{345}}
{{1}{2}{3}{4}{5}{6}{7}} {{1}{3}{24}{35}{45}}
{{1}{4}{5}{25}{345}}
{{2}{4}{12}{35}{45}}
{{4}{5}{13}{23}{45}}
{{1}{2}{3}{5}{46}{56}}
{{1}{2}{4}{6}{34}{56}}
{{1}{2}{3}{4}{5}{7}{67}}
{{1}{2}{3}{4}{5}{6}{7}{8}}
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Nov 15 2018
STATUS
approved
Number of square (0,1)-matrices with exactly n entries equal to 1 and no zero row or columns.
+10
21
1, 1, 2, 10, 70, 642, 7246, 97052, 1503700, 26448872, 520556146, 11333475922, 270422904986, 7016943483450, 196717253145470, 5925211960335162, 190825629733950454, 6543503207678564364, 238019066600097607402, 9153956822981328930170, 371126108428565106918404
OFFSET
0,3
COMMENTS
Number of square (0,1)-matrices with exactly n entries equal to 1 and no zero row or columns, up to row and column permutation, is A057151(n). - Vladeta Jovovic, Mar 25 2006
LINKS
H. Cheballah, S. Giraudo, R. Maurice, Combinatorial Hopf algebra structure on packed square matrices, arXiv preprint arXiv:1306.6605 [math.CO], 2013-2015.
M. Maia and M. Mendez, On the arithmetic product of combinatorial species, arXiv:math/0503436 [math.CO], 2005.
FORMULA
a(n) = (1/n!)*Sum_{k=0..n} Stirling1(n,k)*A048144(k). - Vladeta Jovovic, Mar 25 2006
G.f.: Sum_{n>=0} Sum_{j=0..n} (-1)^(n-j)*binomial(n,j)*((1+x)^j-1)^n. - Vladeta Jovovic, Mar 25 2006
a(n) ~ c * n! / (sqrt(n) * (log(2))^(2*n)), where c = 0.28889864564457451375789435201798... . - Vaclav Kotesovec, May 07 2014
In closed form, c = 1 / (log(2) * 2^(log(2)/2+2) * sqrt(Pi*(1-log(2)))). - Vaclav Kotesovec, May 03 2015
G.f.: Sum_{n>=0} ((1+x)^n - 1)^n / (1+x)^(n*(n+1)). - Paul D. Hanna, Mar 26 2018
EXAMPLE
From Gus Wiseman, Nov 14 2018: (Start)
The a(3) = 10 matrices:
[1 1] [1 1] [1 0] [0 1]
[1 0] [0 1] [1 1] [1 1]
.
[1 0 0] [1 0 0] [0 1 0] [0 1 0] [0 0 1] [0 0 1]
[0 1 0] [0 0 1] [1 0 0] [0 0 1] [1 0 0] [0 1 0]
[0 0 1] [0 1 0] [0 0 1] [1 0 0] [0 1 0] [1 0 0]
(End)
MATHEMATICA
Table[1/n!*Sum[StirlingS1[n, k]*Sum[(m!)^2*StirlingS2[k, m]^2, {m, 0, k}], {k, 0, n}], {n, 1, 20}] (* Vaclav Kotesovec, May 07 2014 *)
Table[Length[Select[Subsets[Tuples[Range[n], 2], {n}], Union[First/@#]==Union[Last/@#]==Range[Max@@First/@#]&]], {n, 5}] (* Gus Wiseman, Nov 14 2018 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Ralf Stephan, Mar 27 2005
EXTENSIONS
More terms from Vladeta Jovovic, Mar 25 2006
a(0)=1 prepended by Alois P. Heinz, Jan 14 2015
STATUS
approved
Number of rim-hook (or border-strip) tableaux whose shape is the integer partition with Heinz number n.
+10
19
1, 1, 2, 2, 4, 5, 8, 4, 10, 12, 16, 12, 32, 28, 29, 8, 64, 29, 128, 33, 78, 64, 256, 28, 62, 144, 62, 86, 512, 100, 1024, 16, 200, 320, 193, 78, 2048, 704, 496, 86, 4096, 306, 8192, 216, 242, 1536, 16384, 64, 414, 242, 1200, 528, 32768, 193, 552, 245, 2848, 3328
OFFSET
1,3
COMMENTS
The Murnaghan-Nakayama rule uses rim-hook tableaux to expand Schur functions in terms of power-sum symmetric functions.
REFERENCES
Richard P. Stanley, Enumerative Combinatorics Volume 2, Cambridge University Press, 1999, Chapter 7.17.
EXAMPLE
The a(6) = 5 tableaux:
3 2 3 1 2 2 2 1 1 1
1 2 1 2 1
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 15 2018
STATUS
approved
Number of plane partitions whose parts are the prime indices of n.
+10
17
1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 5, 1, 4, 1, 3, 2, 2, 1, 5, 2, 2, 3, 3, 1, 4, 1, 7, 2, 2, 2, 8, 1, 2, 2, 5, 1, 4, 1, 3, 3, 2, 1, 7, 2, 4, 2, 3, 1, 7, 2, 5, 2, 2, 1, 8, 1, 2, 3, 11, 2, 4, 1, 3, 2, 4, 1, 12, 1, 2, 4, 3, 2, 4, 1, 7, 5, 2, 1, 8, 2, 2
OFFSET
0,5
COMMENTS
Number of ways to fill a Young diagram with the prime indices of n such that all rows and columns are weakly decreasing.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
EXAMPLE
The a(120) = 12 plane partitions:
32111
.
311 321 3111 3211
21 11 2 1
.
31 32 311 321
21 11 2 1
1 1 1 1
.
31 32
2 1
1 1
1 1
.
3
2
1
1
1
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
ptnplane[n_]:=Union[Map[Reverse@*primeMS, Join@@Permutations/@facs[n], {2}]];
Table[Length[Select[ptnplane[y], And[And@@GreaterEqual@@@#, And@@(GreaterEqual@@@Transpose[PadRight[#]])]&]], {y, 100}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 15 2019
STATUS
approved

Search completed in 0.022 seconds