[go: up one dir, main page]

login
A023894
Number of partitions of n into prime power parts (1 excluded).
56
1, 0, 1, 1, 2, 2, 3, 4, 6, 7, 9, 12, 15, 19, 23, 29, 37, 44, 54, 66, 80, 96, 115, 138, 165, 196, 231, 275, 322, 380, 443, 520, 607, 705, 819, 950, 1099, 1268, 1461, 1681, 1932, 2214, 2533, 2898, 3305, 3768, 4285, 4872, 5530, 6267, 7094, 8022, 9060
OFFSET
0,5
FORMULA
G.f.: Prod(p prime, Prod(k >= 1, 1/(1-x^(p^k))))
EXAMPLE
From Gus Wiseman, Jul 28 2022: (Start)
The a(0) = 1 through a(9) = 7 partitions:
() . (2) (3) (4) (5) (33) (7) (8) (9)
(22) (32) (42) (43) (44) (54)
(222) (52) (53) (72)
(322) (332) (333)
(422) (432)
(2222) (522)
(3222)
(End)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], And@@PrimePowerQ/@#&]], {n, 0, 30}] (* Gus Wiseman, Jul 28 2022 *)
PROG
(PARI) is_primepower(n)= {ispower(n, , &n); isprime(n)}
lista(m) = {x = t + t*O(t^m); gf = prod(k=1, m, if (is_primepower(k), 1/(1-x^k), 1)); for (n=0, m, print1(polcoeff(gf, n, t), ", ")); }
\\ Michel Marcus, Mar 09 2013
(Python)
from functools import lru_cache
from sympy import factorint
@lru_cache(maxsize=None)
def A023894(n):
@lru_cache(maxsize=None)
def c(n): return sum((p**(e+1)-p)//(p-1) for p, e in factorint(n).items())
return (c(n)+sum(c(k)*A023894(n-k) for k in range(1, n)))//n if n else 1 # Chai Wah Wu, Jul 15 2024
CROSSREFS
The multiplicative version (factorizations) is A000688, coprime A354911.
Allowing 1's gives A023893, strict A106244, ranked by A302492.
The strict version is A054685.
The version for just primes is ranked by A076610, squarefree A356065.
Twice-partitions of this type are counted by A279784, factorizations A295935.
These partitions are ranked by A355743.
A000041 counts partitions, strict A000009.
A001222 counts prime-power divisors.
A072233 counts partitions by sum and length.
A246655 lists the prime-powers (A000961 includes 1), towers A164336.
Sequence in context: A093950 A373221 A280715 * A285799 A241772 A323053
KEYWORD
nonn
STATUS
approved