[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a308907 -id:a308907
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of partitions of n into 6 squarefree parts.
+0
10
0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 5, 8, 8, 11, 13, 18, 19, 25, 27, 36, 39, 48, 52, 66, 70, 85, 91, 111, 117, 139, 148, 176, 185, 214, 227, 266, 278, 318, 336, 387, 405, 459, 482, 550, 574, 644, 676, 764, 796, 885, 929, 1038, 1082, 1194, 1247, 1385, 1440, 1580
OFFSET
0,9
FORMULA
a(n) = Sum_{m=1..floor(n/6)} Sum_{l=m..floor((n-m)/5)} Sum_{k=l..floor((n-l-m)/4)} Sum_{j=k..floor((n-k-l-m)/3)} Sum_{i=j..floor((n-j-k-l-m)/2)} mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-k-j-l-m)^2, where mu is the Möbius function (A008683).
a(n) = A308903(n)/n.
MATHEMATICA
Table[Sum[Sum[Sum[Sum[Sum[MoebiusMu[i]^2*MoebiusMu[j]^2*MoebiusMu[k]^2* MoebiusMu[l]^2*MoebiusMu[m]^2*MoebiusMu[n - i - j - k - l - m]^2, {i, j, Floor[(n - j - k - l - m)/2]}], {j, k, Floor[(n - k - l - m)/3]}], {k, l, Floor[(n - l - m)/4]}], {l, m, Floor[(n - m)/5]}], {m, Floor[n/6]}], {n, 0, 50}]
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jun 29 2019
STATUS
approved
Sum of all the parts in the partitions of n into 6 squarefree parts.
+0
7
0, 0, 0, 0, 0, 0, 6, 7, 16, 18, 40, 55, 96, 104, 154, 195, 288, 323, 450, 513, 720, 819, 1056, 1196, 1584, 1750, 2210, 2457, 3108, 3393, 4170, 4588, 5632, 6105, 7276, 7945, 9576, 10286, 12084, 13104, 15480, 16605, 19278, 20726, 24200, 25830, 29624, 31772
OFFSET
0,7
FORMULA
a(n) = n * Sum_{m=1..floor(n/6)} Sum_{l=m..floor((n-m)/5)} Sum_{k=l..floor((n-l-m)/4)} Sum_{j=k..floor((n-k-l-m)/3)} Sum_{i=j..floor((n-j-k-l-m)/2)} mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-k-j-l-m), where mu is the Möbius function (A008683).
a(n) = n * A308902(n).
a(n) = A308906(n) + A308907(n) + A308908(n) + A308909(n) + A308910(n) + A308911(n).
MATHEMATICA
Table[n*Sum[Sum[Sum[Sum[Sum[MoebiusMu[i]^2*MoebiusMu[j]^2*MoebiusMu[k]^2* MoebiusMu[l]^2*MoebiusMu[m]^2*MoebiusMu[n - i - j - k - l - m]^2, {i, j, Floor[(n - j - k - l - m)/2]}], {j, k, Floor[(n - k - l - m)/3]}], {k, l, Floor[(n - l - m)/4]}], {l, m, Floor[(n - m)/5]}], {m, Floor[n/6]}], {n, 0, 50}]
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jun 29 2019
STATUS
approved
Sum of the smallest parts in the partitions of n into 6 squarefree parts.
+0
7
0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 4, 5, 9, 9, 12, 15, 21, 23, 31, 32, 45, 50, 61, 66, 87, 94, 114, 123, 154, 165, 199, 212, 261, 276, 323, 345, 418, 438, 507, 538, 637, 672, 771, 810, 947, 999, 1130, 1192, 1381, 1445, 1625, 1716, 1955, 2045, 2289, 2399, 2720
OFFSET
0,9
FORMULA
a(n) = Sum_{m=1..floor(n/6)} Sum_{l=m..floor((n-m)/5)} Sum_{k=l..floor((n-l-m)/4)} Sum_{j=k..floor((n-k-l-m)/3)} Sum_{i=j..floor((n-j-k-l-m)/2)} mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-k-j-l-m)^2 * m, where mu is the Möbius function (A008683).
a(n) = A308903(n) - A308907(n) - A308908(n) - A308909(n) - A308910(n) - A308911(n).
MATHEMATICA
Table[Sum[Sum[Sum[Sum[Sum[m*MoebiusMu[i]^2*MoebiusMu[j]^2*MoebiusMu[k]^2* MoebiusMu[l]^2*MoebiusMu[m]^2*MoebiusMu[n - i - j - k - l - m]^2, {i, j, Floor[(n - j - k - l - m)/2]}], {j, k, Floor[(n - k - l - m)/3]}], {k, l, Floor[(n - l - m)/4]}], {l, m, Floor[(n - m)/5]}], {m, Floor[n/6]}], {n, 0, 50}]
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jun 29 2019
STATUS
approved
Sum of the fourth largest parts in the partitions of n into 6 squarefree parts.
+0
7
0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 5, 7, 11, 12, 18, 22, 32, 34, 47, 52, 71, 78, 102, 116, 154, 170, 217, 243, 305, 329, 406, 445, 546, 587, 702, 768, 921, 982, 1147, 1240, 1459, 1562, 1811, 1948, 2260, 2401, 2748, 2943, 3387, 3596, 4087, 4381, 4987, 5288, 5959
OFFSET
0,9
FORMULA
a(n) = Sum_{m=1..floor(n/6)} Sum_{l=m..floor((n-m)/5)} Sum_{k=l..floor((n-l-m)/4)} Sum_{j=k..floor((n-k-l-m)/3)} Sum_{i=j..floor((n-j-k-l-m)/2)} mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-k-j-l-m)^2 * k, where mu is the Möbius function (A008683).
a(n) = A308903(n) - A308906(n) - A308907(n) - A308909(n) - A308910(n) - A308911(n).
MATHEMATICA
Table[Sum[Sum[Sum[Sum[Sum[k*MoebiusMu[i]^2*MoebiusMu[j]^2*MoebiusMu[k]^2* MoebiusMu[l]^2*MoebiusMu[m]^2*MoebiusMu[n - i - j - k - l - m]^2, {i, j, Floor[(n - j - k - l - m)/2]}], {j, k, Floor[(n - k - l - m)/3]}], {k, l, Floor[(n - l - m)/4]}], {l, m, Floor[(n - m)/5]}], {m, Floor[n/6]}], {n, 0, 50}]
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jun 29 2019
STATUS
approved
Sum of the third largest parts in the partitions of n into 6 squarefree parts.
+0
7
0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 6, 8, 14, 15, 23, 28, 39, 43, 62, 70, 98, 115, 152, 175, 227, 253, 319, 356, 441, 485, 599, 656, 793, 864, 1026, 1121, 1344, 1453, 1709, 1865, 2184, 2357, 2747, 2964, 3449, 3719, 4289, 4618, 5330, 5693, 6494, 6956, 7922, 8430
OFFSET
0,9
FORMULA
a(n) = Sum_{m=1..floor(n/6)} Sum_{l=m..floor((n-m)/5)} Sum_{k=l..floor((n-l-m)/4)} Sum_{j=k..floor((n-k-l-m)/3)} Sum_{i=j..floor((n-j-k-l-m)/2)} mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-k-j-l-m)^2 * j, where mu is the Möbius function (A008683).
a(n) = A308903(n) - A308906(n) - A308907(n) - A308908(n) - A308910(n) - A308911(n).
MATHEMATICA
Table[Total[Select[IntegerPartitions[n, {6}], AllTrue[#, SquareFreeQ]&][[All, 3]]], {n, 0, 60}] (* Harvey P. Dale, Jan 31 2022 *)
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jun 29 2019
STATUS
approved
Sum of the second largest parts in the partitions of n into 6 squarefree parts.
+0
7
0, 0, 0, 0, 0, 0, 1, 1, 3, 4, 8, 10, 18, 20, 32, 38, 60, 70, 100, 112, 157, 181, 231, 259, 341, 382, 479, 531, 672, 743, 917, 1013, 1253, 1378, 1658, 1819, 2205, 2392, 2832, 3065, 3638, 3909, 4572, 4890, 5726, 6104, 7027, 7495, 8656, 9187, 10455, 11130
OFFSET
0,9
FORMULA
a(n) = Sum_{m=1..floor(n/6)} Sum_{l=m..floor((n-m)/5)} Sum_{k=l..floor((n-l-m)/4)} Sum_{j=k..floor((n-k-l-m)/3)} Sum_{i=j..floor((n-j-k-l-m)/2)} mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-k-j-l-m)^2 * i, where mu is the Möbius function (A008683).
a(n) = A308903(n) - A308906(n) - A308907(n) - A308908(n) - A308909(n) - A308911(n).
MATHEMATICA
Table[Sum[Sum[Sum[Sum[Sum[i*MoebiusMu[i]^2*MoebiusMu[j]^2*MoebiusMu[k]^2* MoebiusMu[l]^2*MoebiusMu[m]^2*MoebiusMu[n - i - j - k - l - m]^2, {i, j, Floor[(n - j - k - l - m)/2]}], {j, k, Floor[(n - k - l - m)/3]}], {k, l, Floor[(n - l - m)/4]}], {l, m, Floor[(n - m)/5]}], {m, Floor[n/6]}], {n, 0, 50}]
Table[Total[Select[IntegerPartitions[n, {6}], AllTrue[#, SquareFreeQ]&][[;; , 2]]], {n, 0, 60}] (* Harvey P. Dale, Jun 16 2024 *)
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jun 29 2019
STATUS
approved
Sum of the largest parts in the partitions of n into 6 squarefree parts.
+0
7
0, 0, 0, 0, 0, 0, 1, 2, 5, 5, 13, 19, 34, 38, 55, 74, 110, 125, 173, 206, 292, 333, 433, 493, 662, 729, 929, 1034, 1323, 1441, 1770, 1955, 2403, 2598, 3096, 3376, 4066, 4360, 5121, 5566, 6584, 7064, 8183, 8832, 10326, 11021, 12626, 13592, 15701, 16743, 18957
OFFSET
0,8
FORMULA
a(n) = Sum_{m=1..floor(n/6)} Sum_{l=m..floor((n-m)/5)} Sum_{k=l..floor((n-l-m)/4)} Sum_{j=k..floor((n-k-l-m)/3)} Sum_{i=j..floor((n-j-k-l-m)/2)} mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-k-j-l-m)^2 * (n-i-j-k-l-m), where mu is the Möbius function (A008683).
a(n) = A308903(n) - A308906(n) - A308907(n) - A308908(n) - A308909(n) - A308910(n).
MATHEMATICA
Table[Sum[Sum[Sum[Sum[Sum[(n - i - j - k - l - m)*MoebiusMu[i]^2* MoebiusMu[j]^2*MoebiusMu[k]^2*MoebiusMu[l]^2*MoebiusMu[m]^2*MoebiusMu[n - i - j - k - l - m]^2, {i, j, Floor[(n - j - k - l - m)/2]}], {j, k, Floor[(n - k - l - m)/3]}], {k, l, Floor[(n - l - m)/4]}], {l, m, Floor[(n - m)/5]}], {m, Floor[n/6]}], {n, 0, 50}]
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jun 29 2019
STATUS
approved

Search completed in 0.006 seconds