editing
approved
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
editing
approved
Table[Total[Select[IntegerPartitions[n, {6}], AllTrue[#, SquareFreeQ]&][[;; , 2]]], {n, 0, 60}] (* Harvey P. Dale, Jun 16 2024 *)
approved
editing
proposed
approved
editing
proposed
allocated for Wesley Ivan HurtSum of the second largest parts in the partitions of n into 6 squarefree parts.
0, 0, 0, 0, 0, 0, 1, 1, 3, 4, 8, 10, 18, 20, 32, 38, 60, 70, 100, 112, 157, 181, 231, 259, 341, 382, 479, 531, 672, 743, 917, 1013, 1253, 1378, 1658, 1819, 2205, 2392, 2832, 3065, 3638, 3909, 4572, 4890, 5726, 6104, 7027, 7495, 8656, 9187, 10455, 11130
0,9
<a href="/index/Par#part">Index entries for sequences related to partitions</a>
a(n) = Sum_{m=1..floor(n/6)} Sum_{l=m..floor((n-m)/5)} Sum_{k=l..floor((n-l-m)/4)} Sum_{j=k..floor((n-k-l-m)/3)} Sum_{i=j..floor((n-j-k-l-m)/2)} mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-k-j-l-m)^2 * i, where mu is the Möbius function (A008683).
Table[Sum[Sum[Sum[Sum[Sum[i*MoebiusMu[i]^2*MoebiusMu[j]^2*MoebiusMu[k]^2* MoebiusMu[l]^2*MoebiusMu[m]^2*MoebiusMu[n - i - j - k - l - m]^2, {i, j, Floor[(n - j - k - l - m)/2]}], {j, k, Floor[(n - k - l - m)/3]}], {k, l, Floor[(n - l - m)/4]}], {l, m, Floor[(n - m)/5]}], {m, Floor[n/6]}], {n, 0, 50}]
allocated
nonn
Wesley Ivan Hurt, Jun 29 2019
approved
editing
allocated for Wesley Ivan Hurt
recycled
allocated
recycled
approved