[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308908
Sum of the fourth largest parts in the partitions of n into 6 squarefree parts.
7
0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 5, 7, 11, 12, 18, 22, 32, 34, 47, 52, 71, 78, 102, 116, 154, 170, 217, 243, 305, 329, 406, 445, 546, 587, 702, 768, 921, 982, 1147, 1240, 1459, 1562, 1811, 1948, 2260, 2401, 2748, 2943, 3387, 3596, 4087, 4381, 4987, 5288, 5959
OFFSET
0,9
FORMULA
a(n) = Sum_{m=1..floor(n/6)} Sum_{l=m..floor((n-m)/5)} Sum_{k=l..floor((n-l-m)/4)} Sum_{j=k..floor((n-k-l-m)/3)} Sum_{i=j..floor((n-j-k-l-m)/2)} mu(m)^2 * mu(l)^2 * mu(k)^2 * mu(j)^2 * mu(i)^2 * mu(n-i-k-j-l-m)^2 * k, where mu is the Möbius function (A008683).
a(n) = A308903(n) - A308906(n) - A308907(n) - A308909(n) - A308910(n) - A308911(n).
MATHEMATICA
Table[Sum[Sum[Sum[Sum[Sum[k*MoebiusMu[i]^2*MoebiusMu[j]^2*MoebiusMu[k]^2* MoebiusMu[l]^2*MoebiusMu[m]^2*MoebiusMu[n - i - j - k - l - m]^2, {i, j, Floor[(n - j - k - l - m)/2]}], {j, k, Floor[(n - k - l - m)/3]}], {k, l, Floor[(n - l - m)/4]}], {l, m, Floor[(n - m)/5]}], {m, Floor[n/6]}], {n, 0, 50}]
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jun 29 2019
STATUS
approved