[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a305541 -id:a305541
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle read by rows: T(n,k) is the number of n-bead bracelets with exactly k different colored beads.
+10
14
1, 1, 1, 1, 2, 1, 1, 4, 6, 3, 1, 6, 18, 24, 12, 1, 11, 56, 136, 150, 60, 1, 16, 147, 612, 1200, 1080, 360, 1, 28, 411, 2619, 7905, 11970, 8820, 2520, 1, 44, 1084, 10480, 46400, 105840, 129360, 80640, 20160, 1, 76, 2979, 41388, 255636, 821952, 1481760, 1512000, 816480, 181440
OFFSET
1,5
COMMENTS
For bracelets, chiral pairs are counted as one.
FORMULA
T(n,k) = Sum_{i=0..k-1} (-1)^i * binomial(k,i) * A081720(n,k-i). - Andrew Howroyd, Mar 25 2017
From Robert A. Russell, Sep 26 2018: (Start)
T(n,k) = (k!/4) * (S2(floor((n+1)/2),k) + S2(ceiling((n+1)/2),k)) + (k!/2n) * Sum_{d|n} phi(d) * S2(n/d,k), where S2 is the Stirling subset number A008277.
G.f. for column k>1: (k!/4) * x^(2k-2) * (1+x)^2 / Product_{i=1..k} (1-i x^2) - Sum_{d>0} (phi(d)/2d) * Sum_{j} (-1)^(k-j) * C(k,j) * log(1-j*x^d).
T(n,k) = (A087854(n,k) + A305540(n,k)) / 2 = A087854(n,k) - A305541(n,k) = A305541(n,k) + A305540(n,k).
(End)
EXAMPLE
Triangle begins with T(1,1):
1;
1, 1;
1, 2, 1;
1, 4, 6, 3;
1, 6, 18, 24, 12;
1, 11, 56, 136, 150, 60;
1, 16, 147, 612, 1200, 1080, 360;
1, 28, 411, 2619, 7905, 11970, 8820, 2520;
1, 44, 1084, 10480, 46400, 105840, 129360, 80640, 20160;
1, 76, 2979, 41388, 255636, 821952, 1481760, 1512000, 816480, 181440;
For T(4,2)=4, the arrangements are AAAB, AABB, ABAB, and ABBB, all achiral.
For T(4,4)=3, the arrangements are ABCD, ABDC, and ACBD, whose chiral partners are ADCB, ACDB, and ADBC respectively. - Robert A. Russell, Sep 26 2018
MATHEMATICA
(* t = A081720 *) t[n_, k_] := (For[t1 = 0; d = 1, d <= n, d++, If[Mod[n, d] == 0, t1 = t1 + EulerPhi[d]*k^(n/d)]]; If[EvenQ[n], (t1 + (n/2)*(1 + k)*k^(n/2))/(2*n), (t1 + n*k^((n+1)/2))/(2*n)]); T[n_, k_] := Sum[(-1)^i * Binomial[k, i]*t[n, k-i], {i, 0, k-1}]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 07 2017, after Andrew Howroyd *)
Table[k! DivisorSum[n, EulerPhi[#] StirlingS2[n/#, k]&]/(2n) + k!(StirlingS2[Floor[(n+1)/2], k] + StirlingS2[Ceiling[(n+1)/2], k])/4, {n, 1, 10}, {k, 1, n}] // Flatten (* Robert A. Russell, Sep 26 2018 *)
CROSSREFS
Row sums give A019537.
Cf. A087854 (oriented), A305540 (achiral), A305541 (chiral).
KEYWORD
nonn,tabl
AUTHOR
Marko Riedel, Jun 02 2016
STATUS
approved
Number of pairs of orientable necklaces with n beads and two colors; i.e., turning the necklace over does not leave it unchanged.
+10
12
0, 0, 0, 0, 0, 0, 1, 2, 6, 14, 30, 62, 128, 252, 495, 968, 1866, 3600, 6917, 13286, 25476, 48916, 93837, 180314, 346554, 666996, 1284570, 2477342, 4781502, 9240012, 17871708, 34604066, 67060746, 130085052, 252548760, 490722344
OFFSET
0,8
COMMENTS
Number of chiral bracelets with n beads and two colors.
LINKS
Daniel Gabric and Joe Sawada, Efficient Construction of Long Orientable Sequences, arXiv:2401.14341 [cs.DS], 2024.
Petros Hadjicostas, Formulas for chiral bracelets, 2019; see Section 5.
John P. McSorley and Alan H. Schoen, Rhombic tilings of (n,k)-ovals, (n, k, lambda)-cyclic difference sets, and related topics, Discrete Math., 313 (2013), 129-154. - From N. J. A. Sloane, Nov 26 2012
FORMULA
a(n) = A000031(n) - A000029(n) = A000029(n) - A029744(n) = (A000031(n) - A029744(n))/2 = A008965(n) - A091696(n)
G.f.: (1 - Sum_{n>=1} phi(n)*log(1 - 2*x^n)/n - (1 + x)^2/(1 - 2*x^2))/2. - Herbert Kociemba, Nov 02 2016
For n > 0, a(n) = -(k^floor((n + 1)/2) + k^ceiling((n + 1)/2))/4 + (1/(2*n))* Sum_{d|n} phi(d)*k^(n/d), where k = 2 is the maximum number of colors. - Robert A. Russell, Sep 24 2018
EXAMPLE
For n=6, the only chiral pair is AABABB-AABBAB. For n=7, the two chiral pairs are AAABABB-AAABBAB and AABABBB-AABBBAB. - Robert A. Russell, Sep 24 2018
MATHEMATICA
nn=35; Table[CoefficientList[Series[CycleIndex[CyclicGroup[n], s]-CycleIndex[DihedralGroup[n], s]/.Table[s[i]->2, {i, 1, n}], {x, 0, nn}], x], {n, 1, nn}]//Flatten (* Geoffrey Critzer, Mar 26 2013 *)
mx=40; CoefficientList[Series[(1-Sum[ EulerPhi[n]*Log[1-2*x^n]/n, {n, mx}]-(1+x)^2/(1-2*x^2))/2, {x, 0, mx}], x] (* Herbert Kociemba, Nov 02 2016 *)
terms = 36; a29[0] = 1; a29[n_] := (1/4)*(Mod[n, 2] + 3)*2^Quotient[n, 2] + DivisorSum[n, EulerPhi[#]*2^(n/#) & ]/(2*n); Array[a29, 36, 0] - LinearRecurrence[{0, 2}, {1, 2, 3}, 36] (* Jean-François Alcover, Nov 05 2017 *)
k = 2; Prepend[Table[DivisorSum[n, EulerPhi[#] k^(n/#) &]/(2n)(k^Floor[(n+1)/2] + k^Ceiling[(n+1)/2])/4, {n, 1, 30}], 0] (* Robert A. Russell, Sep 24 2018 *)
CROSSREFS
Column 2 of A293496.
Cf. A059053.
Column 2 of A305541.
Equals (A000031 - A164090) / 2.
a(n) = (A052823(n) - A027383(n-2)) / 2.
KEYWORD
nonn
AUTHOR
Henry Bottomley, Dec 22 2000
STATUS
approved
T(n,k) is the number of non-equivalent distinguishing colorings of the cycle on n vertices with exactly k colors (k>=1). Regular triangle read by rows, n >= 1, 1 <= k <= n.
+10
6
0, 0, 0, 0, 0, 1, 0, 0, 3, 3, 0, 0, 12, 24, 12, 0, 1, 34, 124, 150, 60, 0, 2, 111, 588, 1200, 1080, 360, 0, 6, 315, 2484, 7845, 11970, 8820, 2520, 0, 14, 933, 10240, 46280, 105840, 129360, 80640, 20160, 0, 30, 2622, 40464, 254664, 821592, 1481760, 1512000, 816480, 181440
OFFSET
1,9
COMMENTS
The cycle graph is defined for n>=3; extended to n=1,2 using the closed form.
A vertex-coloring of a graph G is called distinguishing if it is only preserved by the identity automorphism of G. This notion is considered in the subject of symmetry breaking of simple (finite or infinite) graphs. Two vertex-colorings of a graph are called equivalent if there is an automorphism of the graph which preserves the colors of the vertices. Given a graph G, we use the notation phi_k(G) to denote the number of non-equivalent distinguishing colorings of G with exactly k colors. The sequence here, displays T(n,k)=phi_k(C_n), i.e., the number of non-equivalent distinguishing colorings of the cycle C_n on n vertices with exactly k colors.
From Andrew Howroyd, Aug 15 2019: (Start)
First differs from A305541 at n = 6.
Also the number of n-bead asymmetric bracelets with exactly k different colored beads. More precisely the number of chiral pairs of primitive (aperiodic) color loops of length n with exactly k different colors. For example, for n=4 and k = 3, there are 3 achiral loops (1213, 1232, 1323) and 3 pairs of chiral loops (1123/1132, 1223/1322, 1233/1332).
(End)
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275 (first 50 rows)
B. Ahmadi, F. Alinaghipour and M. H. Shekarriz, Number of Distinguishing Colorings and Partitions, arXiv:1910.12102 [math.CO], 2019.
FORMULA
Let n>2. For any k >= floor(n/2) we have phi_k(C_n)=k! * Stirling2(n,k)/2n.
T(n, k) = Sum_{i=2..k} (-1)^(k-i)*binomial(k,i)*A309528(n, i). - Andrew Howroyd, Aug 12 2019
Column k is the Moebius transform of column k of A305541. - Andrew Howroyd, Sep 13 2019
EXAMPLE
The triangle begins:
0
0, 0;
0, 0, 1;
0, 0, 3, 3;
0, 0, 12, 24, 12;
0, 1, 34, 124, 150, 60;
0, 2, 111, 588, 1200, 1080, 360;
0, 6, 315, 2484, 7845, 11970, 8820, 2520;
0, 14, 933, 10240, 46280, 105840, 129360, 80640, 20160;
0, 30, 2622, 40464, 254664, 821592, 1481760, 1512000, 816480, 181440;
...
For n=4, we can color the vertices of the cycle C_4 with exactly 3 colors, in 3 ways, such that all the colorings distinguish the graph (i.e., no non-identity automorphism of C_4 preserves the coloring) and that all the three colorings are non-equivalent. The color classes are as follows:
{ { 1 }, { 2 }, { 3, 4 } }
{ { 1 }, { 2, 3 }, { 4 } }
{ { 1, 2 }, { 3 }, { 4 } }
PROG
(PARI) \\ U(n, k) is A309528
U(n, k)={sumdiv(n, d, moebius(n/d)*(k^d/n - if(d%2, k^((d+1)/2), (k+1)*k^(d/2)/2)))/2}
T(n, k)={sum(i=2, k, (-1)^(k-i)*binomial(k, i)*U(n, i))} \\ Andrew Howroyd, Aug 12 2019
CROSSREFS
Columns k=2..4 are A032239(n>=3), A326660, A326789.
Row sums are A326888.
KEYWORD
nonn,tabl
AUTHOR
Bahman Ahmadi, Aug 11 2019
STATUS
approved
Number of chiral pairs of color loops of length n with integer entries that cover an initial interval of positive integers.
+10
4
0, 0, 1, 6, 48, 370, 3341, 33966, 393468, 5111100, 73753685, 1170469192, 20263758984, 380047816638, 7676106093049, 166114206920706, 3834434320842720, 94042629507775794, 2442147034668044933, 66942194905680941268, 1931543452344523778392, 58519191359156026158522
OFFSET
1,4
LINKS
FORMULA
Inverse Moebius transform of A326888.
PROG
(PARI) a(n)={sum(k=1, n, -k!*(stirling((n+1)\2, k, 2) + stirling(n\2+1, k, 2))/4 + k!*sumdiv(n, d, eulerphi(d)*stirling(n/d, k, 2))/(2*n))} \\ Andrew Howroyd, Sep 13 2019
CROSSREFS
Row sums of A305541.
Cf. A326888.
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Sep 13 2019
STATUS
approved
Number of chiral pairs of color loops of length n with exactly 3 different colors.
+10
3
0, 0, 1, 3, 12, 35, 111, 318, 934, 2634, 7503, 21071, 59472, 167229, 472133, 1333263, 3777600, 10721837, 30516447, 87035631, 248820816, 712751271, 2045784183, 5882388956, 16942974060, 48876617790, 141204945463, 408495109005, 1183247473872, 3431451145390, 9962348798055, 28953196894668
OFFSET
1,4
FORMULA
a(n) = -(k!/4)*(S2(floor((n+1)/2),k) + S2(ceiling((n+1)/2),k)) + (k!/(2n))*Sum_{d|n} phi(d)*S2(n/d,k), with k=3 different colors used and where S2(n,k) is the Stirling subset number A008277.
a(n) = (A052823(n) - A056489(n)) / 2.
a(n) = A305541(n,3).
G.f.: -(3/2) * x^4 * (1+x)^2 / Product_{j=1..3} (1-j*x^2) - Sum_{d>0} (phi(d)/(2d)) * (log(1-3x^d) - 3*log(1-2x^d) + 3*log(1-x^d)).
EXAMPLE
For a(4)=3, the chiral pairs of color loops are AABC-AACB, ABBC-ACBB, and ABCC-ACCB.
MATHEMATICA
k=3; Table[(k!/(2n)) DivisorSum[n, EulerPhi[#] StirlingS2[n/#, k] &] - (k!/4) (StirlingS2[Floor[(n+1)/2], k] + StirlingS2[Ceiling[(n+1)/2], k]), {n, 1, 40}]
PROG
(PARI) a(n) = my(k=3); -(k!/4)*(stirling(floor((n+1)/2), k, 2) + stirling(ceil((n+1)/2), k, 2)) + (k!/(2*n))*sumdiv(n, d, eulerphi(d)*stirling(n/d, k, 2)); \\ Michel Marcus, Jun 06 2018
CROSSREFS
Third column of A305541.
KEYWORD
nonn,easy
AUTHOR
Robert A. Russell, Jun 04 2018
STATUS
approved
Number of chiral pairs of color loops of length n with exactly 4 different colors.
+10
3
0, 0, 0, 3, 24, 124, 588, 2487, 10240, 40488, 158220, 609078, 2333520, 8895204, 33864364, 128793627, 490027200, 1865625340, 7110959340, 27138210888, 103717720000, 396965694444, 1521562700988, 5840509760582, 22450188684288, 86412088367640, 333035003543900, 1285108410802038, 4964755661788560, 19201631174055992
OFFSET
1,4
FORMULA
a(n) = -(k!/4)*(S2(floor((n+1)/2),k) + S2(ceiling((n+1)/2),k)) + (k!/(2n))*Sum_{d|n} phi(d)*S2(n/d,k), with k=4 different colors used and where S2(n,k) is the Stirling subset number A008277.
a(n) = (A052824(n) - A056490(n)) / 2.
a(n) = A305541(n,4).
G.f.: -6 * x^6 * (1+x)^2 / Product_{j=1..4} (1-j*x^2) - Sum_{d>0} (phi(d)/(2d)) * (log(1-4x^d) - 4*log(1-3x^3) + 6*log(1-2x^d) - 4*log(1-x^d)).
EXAMPLE
For a(4)=3, the chiral pairs of color loops are ABCD-ADCB, ACBD-ADBC, and ABDC-ACDB.
MATHEMATICA
k=4; Table[(k!/(2n)) DivisorSum[n, EulerPhi[#] StirlingS2[n/#, k] &] - (k!/4) (StirlingS2[Floor[(n+1)/2], k] + StirlingS2[Ceiling[(n+1)/2], k]), {n, 1, 40}]
PROG
(PARI) a(n) = my(k=4); -(k!/4)*(stirling(floor((n+1)/2), k, 2) + stirling(ceil((n+1)/2), k, 2)) + (k!/(2*n))*sumdiv(n, d, eulerphi(d)*stirling(n/d, k, 2)); \\ Michel Marcus, Jun 06 2018
CROSSREFS
Fourth column of A305541.
KEYWORD
nonn,easy
AUTHOR
Robert A. Russell, Jun 04 2018
STATUS
approved
Number of chiral pairs of color loops of length n with exactly 5 different colors.
+10
2
0, 0, 0, 0, 12, 150, 1200, 7845, 46280, 254676, 1344900, 6892425, 34646220, 171715050, 843004688, 4110478470, 19950471120, 96525524140, 466068873900, 2247609721431, 10832163963860, 52194011649150, 251522234238000, 1212501695554920, 5848043487355752, 28223528190496380, 136307124614215660, 658800774340433025, 3186621527711606940
OFFSET
1,5
FORMULA
a(n) = -(k!/4)*(S2(floor((n+1)/2),k) + S2(ceiling((n+1)/2),k)) + (k!/(2n))*Sum_{d|n} phi(d)*S2(n/d,k), with k=5 different colors used and where S2(n,k) is the Stirling subset number A008277.
a(n) = (A052825(n) - A056491(n)) / 2.
a(n) = A305541(n,5).
G.f.: -30 * x^8 * (1+x)^2 / Product_{j=1..5} (1-j*x^2) - Sum_{d>0} (phi(d)/(2d)) * (log(1-5x^d) - 5*log(1-4x^d) + 10*log(1-3x^3) - 10*log(1-2x^d) + 5*log(1-x^d)).
EXAMPLE
For a(5)=12, the chiral pairs of color loops are ABCDE-AEDCB, ABCED-ADECB, ABDCE-AECDB, ABDEC-ACEDB, ABECD-ADCEB, ABEDC-ACDEB, ACBDE-AEDBC, ACBED-ADEBC, ACDBE-AEBCD, ACEDB-ABDEC, ADBCE-AECBD, ADBEC-ACEBD, and ADCBE-AEBCD.
MATHEMATICA
k=5; Table[(k!/(2n)) DivisorSum[n, EulerPhi[#] StirlingS2[n/#, k] &] - (k!/4) (StirlingS2[Floor[(n+1)/2], k] + StirlingS2[Ceiling[(n+1)/2], k]), {n, 1, 40}]
PROG
(PARI) a(n) = my(k=5); -(k!/4)*(stirling(floor((n+1)/2), k, 2) + stirling(ceil((n+1)/2), k, 2)) + (k!/(2*n))*sumdiv(n, d, eulerphi(d)*stirling(n/d, k, 2)); \\ Michel Marcus, Jun 06 2018
CROSSREFS
Fifth column of A305541.
KEYWORD
nonn,easy
AUTHOR
Robert A. Russell, Jun 04 2018
STATUS
approved
Number of chiral pairs of color loops of length n with exactly 6 different colors.
+10
2
0, 0, 0, 0, 0, 60, 1080, 11970, 105840, 821592, 5873760, 39705630, 258121080, 1631169900, 10096542792, 61535329380, 370709045280, 2213740488600, 13132064237040, 77509384111278, 455754440462040, 2672268921657540, 15636049474529880, 91353538645037220, 533180401444362672
OFFSET
1,6
FORMULA
a(n) = -(k!/4)*(S2(floor((n+1)/2),k) + S2(ceiling((n+1)/2),k)) + (k!/(2n))*Sum_{d|n} phi(d)*S2(n/d,k), with k=6 different colors used and where S2(n,k) is the Stirling subset number A008277.
a(n) = (A052826(n) - A056492(n)) / 2.
a(n) = A305541(n,6).
G.f.: -180 * x^10 * (1+x)^2 / Product_{j=1..6} (1-j*x^2) - Sum_{d>0} (phi(d)/(2d)) * (log(1-6x^d) - 6*log(1-5x^d) + 15*log(1-4x^d) - 20*log(1-3x^3) + 15*log(1-2x^d) - 5*log(1-x^d)).
EXAMPLE
For a(6) = 60, we pair up the 5! = 120 permutations of BCDEF, each with its reversal. Then put an A before each to end up with 60 chiral pairs such as ABCDEF-AFEDCB.
MATHEMATICA
k=6; Table[(k!/(2n)) DivisorSum[n, EulerPhi[#] StirlingS2[n/#, k] &] - (k!/4) (StirlingS2[Floor[(n+1)/2], k] + StirlingS2[Ceiling[(n+1)/2], k]), {n, 1, 40}]
PROG
(PARI) a(n) = my(k=6); -(k!/4)*(stirling(floor((n+1)/2), k, 2) + stirling(ceil((n+1)/2), k, 2)) + (k!/(2*n))*sumdiv(n, d, eulerphi(d)*stirling(n/d, k, 2)); \\ Michel Marcus, Jun 06 2018
CROSSREFS
Sixth column of A305541.
KEYWORD
nonn,easy
AUTHOR
Robert A. Russell, Jun 04 2018
STATUS
approved

Search completed in 0.014 seconds