OFFSET
0,9
COMMENTS
Turning over the necklaces is not allowed.
With other words: T(n,k) is the number of normal Lyndon words of length n and maximum k, where a finite sequence is normal if it spans an initial interval of positive integers. - _Gus Wiseman_, Dec 22 2017
LINKS
Alois P. Heinz, Rows n = 0..140, flattened
FORMULA
EXAMPLE
Triangle T(n,k) begins:
1;
0, 1;
0, 0, 1;
0, 0, 2, 2;
0, 0, 3, 9, 6;
0, 0, 6, 30, 48, 24;
0, 0, 9, 89, 260, 300, 120;
0, 0, 18, 258, 1200, 2400, 2160, 720;
0, 0, 30, 720, 5100, 15750, 23940, 17640, 5040;
...
The T(4,3) = 9 normal Lyndon words of length 4 with maximum 3 are: 1233, 1323, 1332, 1223, 1232, 1322, 1123, 1132, 1213. - _Gus Wiseman_, Dec 22 2017
MAPLE
with(numtheory):
b:= proc(n, k) option remember; `if`(n=0, 1,
add(mobius(n/d)*k^d, d=divisors(n))/n)
end:
T:= (n, k)-> add(b(n, k-j)*binomial(k, j)*(-1)^j, j=0..k):
seq(seq(T(n, k), k=0..n), n=0..10);
MATHEMATICA
b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[MoebiusMu[n/d]*k^d, {d, Divisors[n]}]/n]; T[n_, k_] := Sum[b[n, k-j]*Binomial[k, j]*(-1)^j, {j, 0, k}]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* _Jean-François Alcover_, Jan 27 2015, after _Alois P. Heinz_ *)
LyndonQ[q_]:=q==={}||Array[OrderedQ[{q, RotateRight[q, #]}]&, Length[q]-1, 1, And]&&Array[RotateRight[q, #]&, Length[q], 1, UnsameQ];
allnorm[n_, k_]:=If[k===0, If[n===0, {{}}, {}], Join@@Permutations/@Function[s, Array[Count[s, y_/; y<=#]+1&, n]]/@Select[Subsets[Range[n-1]+1], Length[#]===k-1&]];
Table[Length[Select[allnorm[n, k], LyndonQ]], {n, 0, 7}, {k, 0, n}] (* _Gus Wiseman_, Dec 22 2017 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
_Alois P. Heinz_, Jan 23 2015
STATUS
approved