[go: up one dir, main page]

login
A254040
Number T(n,k) of primitive (= aperiodic) n-bead necklaces with colored beads of exactly k different colors; triangle T(n,k), n >= 0, 0 <= k <= n, read by rows.
19
1, 0, 1, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 9, 6, 0, 0, 6, 30, 48, 24, 0, 0, 9, 89, 260, 300, 120, 0, 0, 18, 258, 1200, 2400, 2160, 720, 0, 0, 30, 720, 5100, 15750, 23940, 17640, 5040, 0, 0, 56, 2016, 20720, 92680, 211680, 258720, 161280, 40320
OFFSET
0,9
COMMENTS
Turning over the necklaces is not allowed.
With other words: T(n,k) is the number of normal Lyndon words of length n and maximum k, where a finite sequence is normal if it spans an initial interval of positive integers. - _Gus Wiseman_, Dec 22 2017
LINKS
FORMULA
T(n,k) = Sum_{j=0..k} (-1)^j * C(k,j) * A074650(n,k-j).
T(n,k) = Sum_{d|n} mu(d) * A087854(n/d, k) for n >= 1 and 1 <= k <= n. - _Petros Hadjicostas_, Aug 20 2019
EXAMPLE
Triangle T(n,k) begins:
1;
0, 1;
0, 0, 1;
0, 0, 2, 2;
0, 0, 3, 9, 6;
0, 0, 6, 30, 48, 24;
0, 0, 9, 89, 260, 300, 120;
0, 0, 18, 258, 1200, 2400, 2160, 720;
0, 0, 30, 720, 5100, 15750, 23940, 17640, 5040;
...
The T(4,3) = 9 normal Lyndon words of length 4 with maximum 3 are: 1233, 1323, 1332, 1223, 1232, 1322, 1123, 1132, 1213. - _Gus Wiseman_, Dec 22 2017
MAPLE
with(numtheory):
b:= proc(n, k) option remember; `if`(n=0, 1,
add(mobius(n/d)*k^d, d=divisors(n))/n)
end:
T:= (n, k)-> add(b(n, k-j)*binomial(k, j)*(-1)^j, j=0..k):
seq(seq(T(n, k), k=0..n), n=0..10);
MATHEMATICA
b[n_, k_] := b[n, k] = If[n == 0, 1, Sum[MoebiusMu[n/d]*k^d, {d, Divisors[n]}]/n]; T[n_, k_] := Sum[b[n, k-j]*Binomial[k, j]*(-1)^j, {j, 0, k}]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* _Jean-François Alcover_, Jan 27 2015, after _Alois P. Heinz_ *)
LyndonQ[q_]:=q==={}||Array[OrderedQ[{q, RotateRight[q, #]}]&, Length[q]-1, 1, And]&&Array[RotateRight[q, #]&, Length[q], 1, UnsameQ];
allnorm[n_, k_]:=If[k===0, If[n===0, {{}}, {}], Join@@Permutations/@Function[s, Array[Count[s, y_/; y<=#]+1&, n]]/@Select[Subsets[Range[n-1]+1], Length[#]===k-1&]];
Table[Length[Select[allnorm[n, k], LyndonQ]], {n, 0, 7}, {k, 0, n}] (* _Gus Wiseman_, Dec 22 2017 *)
CROSSREFS
Columns k=0-10 give: A000007, A063524, A001037 (for n>1), A056288, A056289, A056290, A056291, A254079, A254080, A254081, A254082.
Row sums give A060223.
Main diagonal and lower diagonal give: A000142, A074143.
T(2n,n) gives A254083.
Sequence in context: A329331 A370049 A355664 * A376725 A062275 A138270
KEYWORD
nonn,tabl
AUTHOR
_Alois P. Heinz_, Jan 23 2015
STATUS
approved