[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305541
Triangle read by rows: T(n,k) is the number of chiral pairs of color loops of length n with exactly k different colors.
9
0, 0, 0, 0, 0, 1, 0, 0, 3, 3, 0, 0, 12, 24, 12, 0, 1, 35, 124, 150, 60, 0, 2, 111, 588, 1200, 1080, 360, 0, 6, 318, 2487, 7845, 11970, 8820, 2520, 0, 14, 934, 10240, 46280, 105840, 129360, 80640, 20160, 0, 30, 2634, 40488, 254676, 821592, 1481760, 1512000, 816480, 181440, 0, 62, 7503, 158220, 1344900, 5873760, 14658840, 21772800, 19051200, 9072000, 1814400
OFFSET
1,9
COMMENTS
In other words, the number of n-bead bracelets with beads of exactly k different colors that when turned over are different from themselves. - Andrew Howroyd, Sep 13 2019
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275 (first 50 rows)
FORMULA
T(n,k) = -(k!/4)*(S2(floor((n+1)/2),k) + S2(ceiling((n+1)/2),k)) + (k!/(2 n))*Sum_{d|n} phi(d)*S2(n/d,k), where S2(n,k) is the Stirling subset number A008277.
T(n,k) = A087854(n,k) - A273891(n,k).
T(n,k) = (A087854(n,k) - A305540(n,k)) / 2.
T(n, k) = Sum_{i=0..k} (-1)^(k-i)*binomial(k,i)*A293496(n, i). - Andrew Howroyd, Sep 13 2019
EXAMPLE
Triangle T(n,k) begins:
0;
0, 0;
0, 0, 1;
0, 0, 3, 3;
0, 0, 12, 24, 12;
0, 1, 35, 124, 150, 60;
0, 2, 111, 588, 1200, 1080, 360;
0, 6, 318, 2487, 7845, 11970, 8820, 2520;
0, 14, 934, 10240, 46280, 105840, 129360, 80640, 20160;
0, 30, 2634, 40488, 254676, 821592, 1481760, 1512000, 816480, 181440;
...
For T(4,3)=3, the chiral pairs are AABC-AACB, ABBC-ACBB, and ABCC-ACCB.
For T(4,4)=3, the chiral pairs are ABCD-ADCB, ABDC-ACDB, and ACBD-ADBC.
MATHEMATICA
Table[(k!/(2n)) DivisorSum[n, EulerPhi[#] StirlingS2[n/#, k] &] - (k!/4) (StirlingS2[Floor[(n+1)/2], k] + StirlingS2[Ceiling[(n+1)/2], k]), {n, 1, 15}, {k, 1, n}] // Flatten
PROG
(PARI) T(n, k) = {-k!*(stirling((n+1)\2, k, 2) + stirling(n\2+1, k, 2))/4 + k!*sumdiv(n, d, eulerphi(d)*stirling(n/d, k, 2))/(2*n)} \\ Andrew Howroyd, Sep 13 2019
CROSSREFS
Columns 2-6 are A059076, A305542, A305543, A305544, and A305545.
Row sums are A326895.
Sequence in context: A199041 A199237 A309651 * A280810 A283386 A278385
KEYWORD
nonn,tabl,easy
AUTHOR
Robert A. Russell, Jun 04 2018
STATUS
approved