[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a273950 -id:a273950
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) is the only number m such that 12^(2^m) + 1 is divisible by A273950(n).
+20
0
1, 0, 3, 1, 2, 3, 2, 7, 5, 6, 12, 15, 6, 4, 14, 3, 11, 11, 18, 8, 12, 19, 18, 6, 12, 18, 19, 11, 21, 10, 19, 29, 8, 26, 16, 4, 38, 21, 23, 39, 14, 42, 40, 30
OFFSET
1,3
PROG
(PARI) forstep(p=3, 10^15, 2, if(!Mod(p, 3)==0, if(isprime(p), o=znorder(Mod(12, p)); x=ispower(2*o); if(2^(x-1)==o, print1(x-2, ", ")))));
CROSSREFS
Cf. A273950.
KEYWORD
nonn,more
AUTHOR
STATUS
approved
Odd prime factors of generalized Fermat numbers of the form 3^(2^m) + 1 with m >= 0.
+10
8
5, 17, 41, 193, 257, 12289, 59393, 65537, 275201, 786433, 790529, 8972801, 13631489, 21523361, 134382593, 155189249, 448524289, 524455937, 847036417, 3221225473, 12348030977, 22320686081, 77309411329, 206158430209, 4638564679681, 6597069766657, 12079910333441
OFFSET
1,1
COMMENTS
Odd primes p such that the multiplicative order of 3 (mod p) is a power of 2.
LINKS
Arkadiusz Wesolowski, Table of n, a(n) for n = 1..35
Anders Björn and Hans Riesel, Factors of generalized Fermat numbers, Math. Comp. 67 (1998), no. 221, pp. 441-446.
Anders Björn and Hans Riesel, Table errata to “Factors of generalized Fermat numbers”, Math. Comp. 74 (2005), no. 252, p. 2099.
Anders Björn and Hans Riesel, Table errata 2 to "Factors of generalized Fermat numbers", Math. Comp. 80 (2011), pp. 1865-1866.
C. K. Caldwell, Top Twenty page, Generalized Fermat Divisors (base=3)
Harvey Dubner and Wilfrid Keller, Factors of Generalized Fermat Numbers, Math. Comp. 64 (1995), no. 209, pp. 397-405.
Hans Riesel, Common prime factors of the numbers A_n=a^(2^n)+1, BIT 9 (1969), pp. 264-269.
MATHEMATICA
Select[Prime@Range[2, 10^5], IntegerQ@Log[2, MultiplicativeOrder[3, #]] &]
CROSSREFS
Cf. A023394, A059919, A072982, A268657, A268661, A273946 (base 5), A273947 (base 6), A273948 (base 7), A273949 (base 11), A273950 (base 12).
KEYWORD
nonn
AUTHOR
STATUS
approved
Odd prime factors of generalized Fermat numbers of the form 5^(2^m) + 1 with m >= 0.
+10
8
3, 13, 17, 257, 313, 641, 769, 2593, 11489, 19457, 65537, 163841, 786433, 1503233, 1655809, 7340033, 14155777, 18395137, 23606273, 29423041, 39714817, 75068993, 167772161, 2483027969, 4643094529, 6616514561, 47148957697, 241931001601, 2748779069441
OFFSET
1,1
COMMENTS
Odd primes p such that the multiplicative order of 5 (mod p) is a power of 2.
REFERENCES
Hans Riesel, Common prime factors of the numbers A_n=a^(2^n)+1, BIT 9 (1969), pp. 264-269.
LINKS
Arkadiusz Wesolowski, Table of n, a(n) for n = 1..37
Anders Björn and Hans Riesel, Factors of generalized Fermat numbers, Math. Comp. 67 (1998), no. 221, pp. 441-446.
Anders Björn and Hans Riesel, Table errata to “Factors of generalized Fermat numbers”, Math. Comp. 74 (2005), no. 252, p. 2099.
Anders Björn and Hans Riesel, Table errata 2 to "Factors of generalized Fermat numbers", Math. Comp. 80 (2011), pp. 1865-1866.
C. K. Caldwell, Top Twenty page, Generalized Fermat Divisors (base=5)
Harvey Dubner and Wilfrid Keller, Factors of Generalized Fermat Numbers, Math. Comp. 64 (1995), no. 209, pp. 397-405.
MATHEMATICA
Select[Prime@Range[2, 10^5], IntegerQ@Log[2, MultiplicativeOrder[5, #]] &]
CROSSREFS
Cf. A023394, A072982, A199591, A268658, A268662, A273945 (base 3), A273947 (base 6), A273948 (base 7), A273949 (base 11), A273950 (base 12).
KEYWORD
nonn
AUTHOR
STATUS
approved
Prime factors of generalized Fermat numbers of the form 6^(2^m) + 1 with m >= 0.
+10
8
7, 17, 37, 257, 353, 1297, 1697, 2753, 18433, 65537, 80897, 98801, 145601, 763649, 3360769, 4709377, 13631489, 50307329, 376037377, 2483027969, 3191106049, 4926056449, 51808043009, 152605556737, 916326983681, 1268357529601, 6597069766657, 40711978221569
OFFSET
1,1
COMMENTS
Primes p other than 5 such that the multiplicative order of 6 (mod p) is a power of 2.
REFERENCES
Hans Riesel, Common prime factors of the numbers A_n=a^(2^n)+1, BIT 9 (1969), pp. 264-269.
LINKS
Arkadiusz Wesolowski, Table of n, a(n) for n = 1..34
Anders Björn and Hans Riesel, Factors of generalized Fermat numbers, Math. Comp. 67 (1998), no. 221, pp. 441-446.
Anders Björn and Hans Riesel, Table errata to “Factors of generalized Fermat numbers”, Math. Comp. 74 (2005), no. 252, p. 2099.
Anders Björn and Hans Riesel, Table errata 2 to "Factors of generalized Fermat numbers", Math. Comp. 80 (2011), pp. 1865-1866.
C. K. Caldwell, Top Twenty page, Generalized Fermat Divisors (base=6)
Harvey Dubner and Wilfrid Keller, Factors of Generalized Fermat Numbers, Math. Comp. 64 (1995), no. 209, pp. 397-405.
MATHEMATICA
Select[Prime@Range[4, 10^5], IntegerQ@Log[2, MultiplicativeOrder[6, #]] &]
CROSSREFS
Cf. A023394, A072982, A078303, A268663, A273945 (base 3), A273946 (base 5), A273948 (base 7), A273949 (base 11), A273950 (base 12).
KEYWORD
nonn
AUTHOR
STATUS
approved
Odd prime factors of generalized Fermat numbers of the form 7^(2^m) + 1 with m >= 0.
+10
8
5, 17, 257, 353, 769, 1201, 12289, 13313, 35969, 65537, 114689, 163841, 169553, 7699649, 9379841, 11886593, 28667393, 64749569, 70254593, 134818753, 197231873, 4643094529, 19847446529, 47072139617, 206158430209, 452850614273, 531968664833, 943558259713
OFFSET
1,1
COMMENTS
Odd primes p other than 3 such that the multiplicative order of 7 (mod p) is a power of 2.
From Robert Israel, Jun 16 2016: (Start)
If p is in the sequence, then for each m either p | 7^(2^k)+1 for some k < m or 2^m | p-1. Thus all members except 5, 17, 353, 1201, 169553, 7699649, 134818753, 47072139617 are congruent to 1 mod 2^7.
The intersection of this sequence and A019337 is A019434 minus {3}. (End)
REFERENCES
Hans Riesel, Common prime factors of the numbers A_n=a^(2^n)+1, BIT 9 (1969), pp. 264-269.
LINKS
Arkadiusz Wesolowski, Table of n, a(n) for n = 1..34
Anders Björn and Hans Riesel, Factors of generalized Fermat numbers, Math. Comp. 67 (1998), no. 221, pp. 441-446.
Anders Björn and Hans Riesel, Table errata to “Factors of generalized Fermat numbers”, Math. Comp. 74 (2005), no. 252, p. 2099.
Anders Björn and Hans Riesel, Table errata 2 to "Factors of generalized Fermat numbers", Math. Comp. 80 (2011), pp. 1865-1866.
Harvey Dubner and Wilfrid Keller, Factors of Generalized Fermat Numbers, Math. Comp. 64 (1995), no. 209, pp. 397-405.
MAPLE
filter:= proc(t)
if not isprime(t) then return false fi;
7 &^ (2^padic:-ordp(t-1, 2)) mod t = 1
end proc:
select(filter, [seq(i, i=5..10^6, 2)]); # Robert Israel, Jun 16 2016
MATHEMATICA
Select[Prime@Range[3, 10^5], IntegerQ@Log[2, MultiplicativeOrder[7, #]] &]
CROSSREFS
Cf. A023394, A072982, A078304, A273945 (base 3), A273946 (base 5), A273947 (base 6), A273949 (base 11), A273950 (base 12).
KEYWORD
nonn
AUTHOR
STATUS
approved
Odd prime factors of generalized Fermat numbers of the form 11^(2^m) + 1 with m >= 0.
+10
8
3, 17, 61, 193, 257, 7321, 15361, 51329, 65537, 163841, 6304673, 15190529, 70254593, 1691123713, 1760464897, 3221225473, 3489660929, 4696846849, 6874464257, 53401878529, 111489577217, 149300051969, 184683593729, 206158430209, 447600088289, 1819992391681
OFFSET
1,1
COMMENTS
Odd primes p other than 5 such that the multiplicative order of 11 (mod p) is a power of 2.
REFERENCES
Hans Riesel, Common prime factors of the numbers A_n=a^(2^n)+1, BIT 9 (1969), pp. 264-269.
LINKS
Arkadiusz Wesolowski, Table of n, a(n) for n = 1..31
Anders Björn and Hans Riesel, Factors of generalized Fermat numbers, Math. Comp. 67 (1998), no. 221, pp. 441-446.
Anders Björn and Hans Riesel, Table errata to “Factors of generalized Fermat numbers”, Math. Comp. 74 (2005), no. 252, p. 2099.
Anders Björn and Hans Riesel, Table errata 2 to "Factors of generalized Fermat numbers", Math. Comp. 80 (2011), pp. 1865-1866.
Harvey Dubner and Wilfrid Keller, Factors of Generalized Fermat Numbers, Math. Comp. 64 (1995), no. 209, pp. 397-405.
MATHEMATICA
Delete[Select[Prime@Range[2, 10^5], IntegerQ@Log[2, MultiplicativeOrder[11, #]] &], 2]
CROSSREFS
Cf. A023394, A072982, A199592, A273945 (base 3), A273946 (base 5), A273947 (base 6), A273948 (base 7), A273950 (base 12).
KEYWORD
nonn
AUTHOR
STATUS
approved
Products of three distinct Fibonacci numbers > 1.
+10
7
30, 48, 78, 80, 120, 126, 130, 195, 204, 208, 210, 312, 315, 330, 336, 340, 504, 510, 520, 534, 544, 546, 550, 816, 819, 825, 840, 864, 880, 884, 890, 1320, 1326, 1335, 1360, 1365, 1398, 1424, 1428, 1430, 1440, 2136, 2142, 2145, 2160, 2184, 2200, 2210, 2262
OFFSET
1,1
LINKS
EXAMPLE
a(1) = 30 = 2*3*5.
MATHEMATICA
s = {1}; nn = 60; f = Fibonacci[2 + Range[nn]]; Do[s = Union[s, Select[s*f[[i]], # <= f[[nn]] &]], {i, nn}]; s = Prepend[s, 0]; Take[s, 100] (* A160009 *)
isFibonacciQ[n_] := Apply[Or, Map[IntegerQ, Sqrt[{# + 4, # - 4} &[5 n^2]]]];
ans = Join[{{0}}, {{1}}, Table[#[[Flatten[Position[Map[Apply[Times, #] &, #], s[[n]]]][[1]]]] &[Rest[Subsets[Rest[Map[#[[1]] &, Select[Map[{#, isFibonacciQ[#]} &, Divisors[s[[n]]]], #[[2]] &]]]]]], {n, 3, 500}]]
Map[Length, ans] (* A272947 *)
Flatten[Position[Map[Length, ans], 1]] (* A272948 *)
Map[Apply[Times, #] &, Select[ans, Length[#] == 1 &]] (* A000045 *)
Map[Apply[Times, #] &, Select[ans, Length[#] == 2 &]] (* A271354 *)
Map[Apply[Times, #] &, Select[ans, Length[#] == 3 &]] (* A272949 *)
Map[Apply[Times, #] &, Select[ans, Length[#] == 4 &]] (* A272950 *)
(* Peter J. C. Moses, May 11 2016 *)
up=10^9; F=Fibonacci; i=3; Union[ Reap[ While[(a = F[i++]) < up, j=i; While[ (b = F[j++]*a) < up, h=j; While[ (c = F[h++]*b) < up, Sow@c ]]]][[2, 1]]] (* Giovanni Resta, May 14 2016 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 13 2016
STATUS
approved
Number of factors Fibonacci(i) > 1 of A160009(n+1).
+10
6
1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 2, 3, 1, 2, 2, 2, 3, 1, 2, 2, 2, 3, 3, 1, 2, 2, 2, 2, 3, 3, 3, 1, 2, 2, 2, 2, 3, 3, 3, 3, 1, 4, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 1, 4, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 1, 4, 4, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3
OFFSET
1,6
EXAMPLE
A160009(15) = 30 = 2*3*5, so that a(15) = 3.
MATHEMATICA
s = {1}; nn = 60; f = Fibonacci[2 + Range[nn]]; Do[s = Union[s, Select[s*f[[i]], # <= f[[nn]] &]], {i, nn}]; s = Prepend[s, 0]; Take[s, 100] (* A160009 *)
isFibonacciQ[n_] := Apply[Or, Map[IntegerQ, Sqrt[{# + 4, # - 4} &[5 n^2]]]];
ans = Join[{{0}}, {{1}}, Table[#[[Flatten[Position[Map[Apply[Times, #] &, #], s[[n]]]][[1]]]] &[Rest[Subsets[Rest[Map[#[[1]] &, Select[Map[{#, isFibonacciQ[#]} &, Divisors[s[[n]]]], #[[2]] &]]]]]], {n, 3, 500}]]
Map[Length, ans] (* A272947 *)
Flatten[Position[Map[Length, ans], 1]] (* A272948 *)
Map[Apply[Times, #] &, Select[ans, Length[#] == 1 &]] (* A000045 *)
Map[Apply[Times, #] &, Select[ans, Length[#] == 2 &]] (* A271354 *)
Map[Apply[Times, #] &, Select[ans, Length[#] == 3 &]] (* A272949 *)
Map[Apply[Times, #] &, Select[ans, Length[#] == 4 &]] (* A272950 *)
(* Peter J. C. Moses, May 11 2016 *)
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 13 2016
STATUS
approved
Positions of Fibonacci numbers in ordered sequence A160009 of all products of Fibonacci numbers.
+10
4
1, 2, 3, 4, 5, 7, 9, 12, 16, 21, 27, 35, 44, 56, 70, 87, 108, 133, 163, 199, 242, 292, 352, 421, 504, 599, 712, 841, 994, 1167, 1371, 1602, 1873, 2179, 2535, 2936, 3401, 3924, 4528, 5206, 5985, 6858, 7857, 8976, 10252, 11679, 13299, 15109, 17159, 19446, 22028
OFFSET
1,2
EXAMPLE
A160009 = (0,1,2,3,5,6,8,10,13,15,16,21,...), so that a = (1,2,3,4,5,7,9,12,...).
MATHEMATICA
s = {1}; nn = 60; f = Fibonacci[2 + Range[nn]]; Do[s = Union[s, Select[s*f[[i]], # <= f[[nn]] &]], {i, nn}]; s = Prepend[s, 0]; Take[s, 100] (* A160009 *)
isFibonacciQ[n_] := Apply[Or, Map[IntegerQ, Sqrt[{# + 4, # - 4} &[5 n^2]]]];
ans = Join[{{0}}, {{1}}, Table[#[[Flatten[Position[Map[Apply[Times, #] &, #], s[[n]]]][[1]]]] &[Rest[Subsets[Rest[Map[#[[1]] &, Select[Map[{#, isFibonacciQ[#]} &, Divisors[s[[n]]]], #[[2]] &]]]]]], {n, 3, 500}]]
Map[Length, ans] (* A272947 *)
Flatten[Position[Map[Length, ans], 1]] (* A272948 *)
Map[Apply[Times, #] &, Select[ans, Length[#] == 1 &]] (* A000045 *)
Map[Apply[Times, #] &, Select[ans, Length[#] == 2 &]] (* A271354 *)
Map[Apply[Times, #] &, Select[ans, Length[#] == 3 &]] (* A272949 *)
Map[Apply[Times, #] &, Select[ans, Length[#] == 4 &]] (* A272950 *)
(* Peter J. C. Moses, May 11 2016 *)
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 13 2016
EXTENSIONS
More terms from Rémy Sigrist, Mar 17 2019
STATUS
approved
Number of prime factors (with multiplicity) of generalized Fermat number 12^(2^n) + 1.
+10
3
1, 2, 2, 3, 2, 2, 5, 2, 5
OFFSET
0,2
FORMULA
a(n) = A001222(A152585(n)). - Felix Fröhlich, Jul 25 2016
EXAMPLE
b(n) = 12^(2^n) + 1.
Complete Factorizations
b(0) = 13
b(1) = 5*29
b(2) = 89*233
b(3) = 17*97*260753
b(4) = 153953*1200913648289
b(5) = 769*44450180997616192602560262634753
b(6) = 36097*81281*69619841*73389730593973249*P35
b(7) = 257*P136
b(8) = 8253953*295278642689*5763919006323142831065059613697*P96*P132
MATHEMATICA
Table[PrimeOmega[12^(2^n) + 1], {n, 0, 7}] (* Michael De Vlieger, Jul 26 2016 *)
PROG
(PARI) a(n) = bigomega(factor(12^(2^n)+1))
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
EXTENSIONS
a(8) was found in 2009 by Tom Womack
STATUS
approved

Search completed in 0.010 seconds