Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Apr 03 2023 10:36:13
%S 7,17,37,257,353,1297,1697,2753,18433,65537,80897,98801,145601,763649,
%T 3360769,4709377,13631489,50307329,376037377,2483027969,3191106049,
%U 4926056449,51808043009,152605556737,916326983681,1268357529601,6597069766657,40711978221569
%N Prime factors of generalized Fermat numbers of the form 6^(2^m) + 1 with m >= 0.
%C Primes p other than 5 such that the multiplicative order of 6 (mod p) is a power of 2.
%D Hans Riesel, Common prime factors of the numbers A_n=a^(2^n)+1, BIT 9 (1969), pp. 264-269.
%H Arkadiusz Wesolowski, <a href="/A273947/b273947.txt">Table of n, a(n) for n = 1..34</a>
%H Anders Björn and Hans Riesel, <a href="http://dx.doi.org/10.1090/S0025-5718-98-00891-6">Factors of generalized Fermat numbers</a>, Math. Comp. 67 (1998), no. 221, pp. 441-446.
%H Anders Björn and Hans Riesel, <a href="http://dx.doi.org/10.1090/S0025-5718-05-01816-8">Table errata to “Factors of generalized Fermat numbers”</a>, Math. Comp. 74 (2005), no. 252, p. 2099.
%H Anders Björn and Hans Riesel, <a href="http://dx.doi.org/10.1090/S0025-5718-10-02371-9">Table errata 2 to "Factors of generalized Fermat numbers"</a>, Math. Comp. 80 (2011), pp. 1865-1866.
%H C. K. Caldwell, Top Twenty page, <a href="https://t5k.org/top20/page.php?id=9">Generalized Fermat Divisors (base=6)</a>
%H Harvey Dubner and Wilfrid Keller, <a href="http://dx.doi.org/10.1090/S0025-5718-1995-1270618-1">Factors of Generalized Fermat Numbers</a>, Math. Comp. 64 (1995), no. 209, pp. 397-405.
%H OEIS Wiki, <a href="/wiki/Generalized_Fermat_numbers">Generalized Fermat numbers</a>
%H Hans Riesel, <a href="http://dx.doi.org/10.1090/S0025-5718-1969-0245507-6">Some factors of the numbers G_n=6^(2^n)+1 and H_n=10^(2^n)+1, Math. Comp. 23 (1969), no. 106, pp. 413-415.
%t Select[Prime@Range[4, 10^5], IntegerQ@Log[2, MultiplicativeOrder[6, #]] &]
%Y Cf. A023394, A072982, A078303, A268663, A273945 (base 3), A273946 (base 5), A273948 (base 7), A273949 (base 11), A273950 (base 12).
%K nonn
%O 1,1
%A _Arkadiusz Wesolowski_, Jun 05 2016