C. K. Caldwell, Top Twenty page, <a href="httphttps://primes.utmt5k.eduorg/top20/page.php?id=9">Generalized Fermat Divisors (base=6)</a>
Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
C. K. Caldwell, Top Twenty page, <a href="httphttps://primes.utmt5k.eduorg/top20/page.php?id=9">Generalized Fermat Divisors (base=6)</a>
proposed
approved
editing
proposed
Hans Riesel, <a href="http://wwwdx.jstordoi.org/stable10.1090/2004436S0025-5718-1969-0245507-6">Some factors of the numbers G_n=6^(2^n)+1 and H_n=10^(2^n)+1, Math. Comp. 23 (1969), no. 106, pp. 413-415.
proposed
editing
editing
proposed
Harvey Dubner and Wilfrid Keller, <a href="http://wwwdx.jstordoi.org/stable10.1090/2153343S0025-5718-1995-1270618-1">Factors of Generalized Fermat Numbers</a>, Math. Comp. 64 (1995), no. 209, pp. 397-405.
proposed
editing
editing
proposed
Arkadiusz Wesolowski, <a href="/A273947/b273947.txt">Table of n, a(n) for n = 1..34</a>
Primes p other than 5 such that the multiplicative order of 6 (mod p) is a power of 2.
Hans Riesel, <a href="http://www.jstor.org/stable/2004436">Some factors of the numbers G_n=6^(2^n)+1 and H_n=10^(2^n)+1, Math. Comp. 23 (1969), no. 106, pp. 413-415.