[go: up one dir, main page]

login
Search: a278567 -id:a278567
     Sort: relevance | references | number | modified | created      Format: long | short | data
Index of first occurrence of n in A278567.
+20
1
1, 7, 42, 385, 436, 1530, 3180, 3625, 8208, 3767, 10116, 6699
OFFSET
1,2
CROSSREFS
Cf. A278567.
KEYWORD
nonn,more
AUTHOR
N. J. A. Sloane, Nov 27 2016
EXTENSIONS
a(12) corrected by Don Reble, Nov 27 2016
STATUS
approved
Irregular triangle read by rows: coefficients of cyclotomic polynomial Phi_n(x) (exponents in increasing order).
+10
35
0, 1, -1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, -1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 0, 1, -1, 1, 0, -1, 1
OFFSET
0,3440
COMMENTS
We follow Maple in defining Phi_0 to be x; it could equally well be taken to be 1.
From Wolfdieter Lang, Oct 29 2013: (Start)
The length of row n >= 1 of this table is phi(n) + 1 = A000010(n) + 1. Row n = 0 has here length 2.
Phi_n(x) is the minimal polynomial of omega_n := exp(i*2*Pi/n) over the rationals. Namely, Phi_n(x) = Product_{k=0..n-1, gcd(k,n)=1} (x - (omega_n)^k). See the Graham et al. reference, 4.50 a, pp. 149, 506.
Phi_n(x) = Product_{d|n} (x^d - 1)^(mu(n/d)) with the Moebius function mu(n) = A008683(n), n >= 1. See the Graham et al. reference, 4.50 b, pp. 149, 506.
Phi_n(x) = Phi_{rad(n)}(x^(n/rad(n))), n >= 2, with rad(n) = A007947(n), the squarefree kernel of n. Proof from the preceding formula, where only squarefree n/d (A005117) from the set of divisors of n enter, by mapping each factor (numerator or denominator) of the left hand side to one of the right hand side and vice versa.
(End)
Each row can be considered as the last column of the companion matrix of the cyclotomic polynomial: A000010(n) is the size of such a square matrix, last column has opposite signs and the last term (before last term of each row in A013595) equal to A008683(n). - Eric Desbiaux, Dec 14 2015
REFERENCES
E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, 1968; see p. 90.
Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966, p. 325.
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, 1991, p. 137.
K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer, 1982, p. 194.
LINKS
Emma Lehmer, On the magnitude of the coefficients of the cyclotomic polynomial, Bull. Amer. Math. Soc. 42 (1936), 389-392.
Eric Weisstein's World of Mathematics, Cyclotomic Polynomial.
FORMULA
a(n,m) = [x^m] Phi_n(x), n >= 0, 0 <= m <= phi(n), with phi(n) = A000010(n). - Wolfdieter Lang, Oct 29 2013
EXAMPLE
Phi_0 = x; Phi_1 = x - 1; Phi_2 = x + 1; Phi_3 = x^2 + x + 1; Phi_4 = x^2 + 1; ...
From Wolfdieter Lang, Oct 29 2013: (Start)
The irregular triangle a(n,m) begins:
n\m 0 1 2 3 4 5 6 7 8 9 10 11 12 ...
0: 0 1
1: -1 1
2: 1 1
3: 1 1 1
4: 1 0 1
5: 1 1 1 1 1
6: 1 -1 1
7: 1 1 1 1 1 1 1
8: 1 0 0 0 1
9: 1 0 0 1 0 0 1
10: 1 -1 1 -1 1
11: 1 1 1 1 1 1 1 1 1 1 1
12: 1 0 -1 0 1
13: 1 1 1 1 1 1 1 1 1 1 1 1 1
14: 1 -1 1 -1 1 -1 1
15: 1 -1 0 1 -1 1 0 -1 1
...
Phi_15(x) = (x^1 - 1)*((x^3 - 1)^(-1))*((x^5 - 1)^(-1))*(x^15 - 1) because mu(15) = mu(1) = +1 and mu(3) = mu(5) = -1. Hence Phi_15(x) = 1 - x + x^3 - x^4 + x^5 - x^7 + x^8, giving row n = 15.
Example for the reduction via the squarefree kernel: Phi_12(x) = Phi_6(x^(12/6)) = Phi_6(x^2). By the formula with the Mobius function Phi_6(x) = Phi_2(x^3)/Phi_2(x) = 1 - x + x^2 and with x -> x^2 this becomes Phi_12(x) = 1 - x^2 + x^4.
(End)
MAPLE
N:= 100: # to get coefficients up to cyclotomic(N, x)
with(numtheory):
for n from 0 to N do
C:= cyclotomic(n, x);
L[n]:= seq(coeff(C, x, i), i=0..degree(C));
od:
A:= [seq](L[n], n=0..N): # note that A013595(n) = A[n+1]
# Robert Israel, Apr 17 2014
MATHEMATICA
Table[CoefficientList[x^KroneckerDelta[n] Cyclotomic[n, x], x], {n, 0, 15}] // Flatten (* Peter Luschny, Dec 27 2016 *)
PROG
(PARI) row(n) = if (n==0, p=x, p = polcyclo(n)); Vecrev(p); \\ Michel Marcus, Dec 14 2015
CROSSREFS
Cf. A013596, A020500 (row sums, n >= 1), A020513 (alternating row sums).
For record coefficients see A160340, A262404, A262405, A278567.
Column m=1 is A157657.
KEYWORD
sign,easy,nice,tabf
EXTENSIONS
Maple program corrected by Robert Israel, Apr 17 2014
STATUS
approved
Indices of records in heights of cyclotomic polynomials (A160338).
+10
9
1, 105, 385, 1365, 1785, 2805, 3135, 6545, 10465, 11305, 17255, 20615, 26565, 40755, 106743, 171717, 255255, 279565, 327845, 707455, 886445, 983535, 1181895, 1752465, 3949491, 8070699, 10163195, 13441645, 15069565, 30489585, 37495115, 40324935
OFFSET
1,2
COMMENTS
m is in this sequence if A160338(k) < A160338(m) for all k<m.
LINKS
John Abbott and Nico Mexis, Cyclotomic Factors and LRS-Degeneracy, arXiv:2403.08751 [math.AC], 2024. See p. 12.
Lola Thompson, Cyclotomic statistics, Univ. Utrecht (Netherlands, 2024). See pp. 6, 14.
MATHEMATICA
r = 0; Do[If[# > r, r = #; Print[n]] &@ Max@ Abs@ CoefficientList[Cyclotomic[n, x], x], {n, 10^4}] (* Michael De Vlieger, May 20 2024 *)
PROG
(PARI) print1(r=1); for(n=2, 1e4, t=vecmax(abs(Vec(polcyclo(n)))); if(t>r, r=t; print1(", "n))) \\ Charles R Greathouse IV, Jun 28 2012
CROSSREFS
Subsequence of A013594 and A046887.
KEYWORD
nonn
AUTHOR
Max Alekseyev, May 13 2009
STATUS
approved
Least k such that the k-th cyclotomic polynomial has n as a coefficient.
+10
6
4, 1, 165, 595, 1785, 1785, 2805, 3135, 6545, 6545, 10465, 10465, 10465, 10465, 10465, 11305, 11305, 11305, 11305, 11305, 11305, 11305, 15015, 11305, 20615, 17255, 20615, 20615, 26565, 26565, 26565, 26565, 26565, 26565, 26565, 26565, 26565, 26565, 26565, 26565, 26565
OFFSET
0,1
COMMENTS
Suzuki proves that a(n) exists for each n. Vaughan proves that there are infinitely many k with a(n) = k and n > exp(exp(log 2 * log k/log log k)).
LINKS
Jiro Suzuki, On coefficients of cyclotomic polynomials, Proc. Japan Acad. Ser. A Math. Sci. 63:7 (1987), pp. 279-280.
R. C. Vaughan, Bounds for the coefficients of cyclotomic polynomials, Michigan Math. J. 21 (1974), 289-295 (1975).
EXAMPLE
Phi(165) = x^80 + x^79 + x^78 - x^75 - x^74 - x^73 - x^69 - x^68 - x^67 + x^65 + 2x^64 + 2x^63 + x^62 - x^60 - x^59 - x^58 - x^54 - x^53 - x^52 + x^50 + 2x^49 + 2x^48 + 2x^47 + x^46 - x^44 - x^43 - x^42 - x^41 - x^40 - x^39 - x^38 - x^37 - x^36 + x^34 + 2x^33 + 2x^32 + 2x^31 + x^30 - x^28 - x^27 - x^26 - x^22 - x^21 - x^20 + x^18 + 2x^17 + 2x^16 + x^15 - x^13 - x^12 - x^11 - x^7 - x^6 - x^5 + x^2 + x + 1, with 2 as the coefficient of x^16 (among others), and this is the least k for which 2 appears, so a(2) = 165.
MAPLE
N:= 40: count:= 0: A:= Array(0..N): A[0]:= 4:
for k from 1 while count < N do
S:= select(t -> t::posint and t <= N and A[t] = 0, {coeffs(numtheory:-cyclotomic(k, x), x)}):
if S <> {} then
A[convert(S, list)]:= k;
count:= count + nops(S);
fi
od:
convert(A, list); # Robert Israel, Dec 23 2018
MATHEMATICA
Table[k = 1; While[! MemberQ[CoefficientList[Cyclotomic[k, x], x], n], k++]; k, {n, 0, 9}] (* Michael De Vlieger, Sep 29 2015 *)
PROG
(PARI) a(n)=my(k, v); while(!setsearch(Set(Vec(polcyclo(k++))), n), ); k
KEYWORD
nonn,look
AUTHOR
EXTENSIONS
Corrected a(22); more terms from Seiichi Manyama, Dec 22 2018
STATUS
approved
Least k such that the k-th cyclotomic polynomial has -n as a coefficient.
+10
5
4, 1, 105, 385, 1365, 2145, 2805, 3135, 6545, 7917, 10465, 10465, 10465, 10465, 10465, 11305, 11305, 11305, 11305, 11305, 11305, 11305, 15015, 17255, 17255, 17255, 20615, 25935, 26565, 26565, 26565, 26565, 26565, 26565, 26565, 26565, 26565, 26565, 26565, 26565, 26565, 26565
OFFSET
0,1
COMMENTS
Suzuki proves that a(n) exists for each n.
LINKS
Jiro Suzuki, On coefficients of cyclotomic polynomials, Proc. Japan Acad. Ser. A Math. Sci. 63:7 (1987), pp. 279-280.
R. C. Vaughan, Bounds for the coefficients of cyclotomic polynomials, Michigan Math. J. 21 (1974), 289-295 (1975).
EXAMPLE
Phi(105) = x^48 + x^47 + x^46 - x^43 - x^42 - 2x^41 - x^40 - x^39 + x^36 + x^35 + x^34 + x^33 + x^32 + x^31 - x^28 - x^26 - x^24 - x^22 - x^20 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 - x^9 - x^8 - 2x^7 - x^6 - x^5 + x^2 + x + 1, with -2 as the coefficient of x^7 (among others), and this is the least k for which -2 appears, so a(2) = 105.
MATHEMATICA
Table[k = 1; While[! MemberQ[CoefficientList[Cyclotomic[k, x], x], -n], k++]; k, {n, 0, 9}] (* Michael De Vlieger, Sep 29 2015 *)
PROG
(PARI) a(n)=my(k, v); while(!setsearch(Set(Vec(polcyclo(k++))), -n), ); k
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Seiichi Manyama, Dec 22 2018
STATUS
approved
a(n) = maximum absolute value of coefficients in the cyclotomic polynomial C(N,x), where N = n-th number which a product of three distinct odd primes = A046389(n).
+10
2
2, 2, 2, 1, 2, 2, 2, 2, 2, 3, 1, 2, 1, 2, 1, 1, 2, 2, 3, 2, 2, 2, 2, 1, 1, 3, 2, 2, 1, 2, 2, 2, 2, 1, 1, 2, 1, 1, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 2, 3, 2, 2, 2, 1, 2, 3, 1, 1, 1, 2, 2, 2, 1, 2, 3, 1, 2, 3, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 3, 1, 2, 2, 2, 1, 3, 2
OFFSET
1,1
REFERENCES
Don Reble, Posting to Sequence Fans Mailing List, Nov 26 2016
LINKS
MAPLE
with(numtheory):
b:= proc(n) option remember; local k;
for k from 2+`if`(n=1, 1, b(n-1)) by 2 while
bigomega(k)<>3 or nops(factorset(k))<>3 do od; k
end:
a:= n-> max(map(abs, [coeffs(cyclotomic(b(n), x))])):
seq(a(n), n=1..120); # Alois P. Heinz, Nov 27 2016
MATHEMATICA
b[n_] := b[n] = (For[k = 2 + If[n == 1, 1, b[n-1]], PrimeOmega[k] != 3 || PrimeNu[k] != 3, k += 2]; k);
a[n_] := Max @ Abs @ CoefficientList[Cyclotomic[b[n], x], x];
Array[a, 120] (* Jean-François Alcover, Mar 28 2017, after Alois P. Heinz *)
CROSSREFS
Cf. A046389. See A278567 for a closely related sequence.
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 27 2016
STATUS
approved
Maximal coefficient (in absolute value) in the numerator of C({1..n},x).
+10
1
1, 1, 2, 17, 444, 66559954, 14648786369948422, 791540878703169050660325841979096789557779, 1918013047695258943191946313451491492494186620117241479813740479213857275772347178176158
OFFSET
0,3
FORMULA
C({s},x) = Sum_{i in {s}} (C({s}-{i},x)*x^i)/(1 - Sum_{i in {s}} (x^i)) with C({},x) = 1.
EXAMPLE
C_x({1,2,3},x) = (-x^15 - 5*x^14 - 12*x^13 - 17*x^12 - 11*x^11 + 4*x^10 + 16*x^9 + 10*x^8 - 6*x^6)/(x^15 + 4*x^14 + 7*x^13 + 4*x^12 - 8*x^11 - 18*x^10 - 13*x^9 + 7*x^8 + 19*x^7 + 11*x^6 - 6*x^5 - 10*x^4 - 2*x^3 + 3*x^2 + 2*x - 1) with maximal coefficient abs(-17) in the numerator, so a(3) = 17.
PROG
(PARI)
C_x(s)={my(g=if(#s <1, 1, sum(i=1, #s, C_x(s[^i])*x^(s[i]))/(1-sum(i=1, #s, x^(s[i]))))); return(g)}
a(n)={vecmax(abs(Vec(numerator(C_x([1..n])))))}
CROSSREFS
KEYWORD
nonn
AUTHOR
John Tyler Rascoe, Jun 28 2024
STATUS
approved

Search completed in 0.007 seconds