OFFSET
1,7
COMMENTS
E. Lehmer (1936) shows that this sequence is unbounded.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..20000
Emma Lehmer, On the magnitude of the coefficients of the cyclotomic polynomial, Bull. Amer. Math. Soc. 42 (1936), 389-392.
EXAMPLE
The first 2 occurs in the famous C(105,x), which is x^48+x^47+x^46-x^43-x^42-2*x^41-x^40-x^39+x^36+x^35+x^34+x^33+x^32+x^31-x^28-x^26-x^24-x^22-x^20+x^17+x^16+x^15+x^14+x^13+x^12-x^9-x^8-2*x^7-x^6-x^5+x^2+x+1.
MAPLE
with(numtheory):
b:= proc(n) option remember; local k;
for k from 1+`if`(n=1, 0, b(n-1)) while
bigomega(k)<>3 or nops(factorset(k))<>3 do od; k
end:
a:= n-> max(map(abs, [coeffs(cyclotomic(b(n), x))])):
seq(a(n), n=1..120); # Alois P. Heinz, Nov 26 2016
MATHEMATICA
f[n_] := Max[ Abs[ CoefficientList[ Cyclotomic[n, x], x]]]; t = Take[ Sort@ Flatten@ Table[Prime@i Prime@j Prime@k, {i, 3, 35}, {j, 2, i -1}, {k, j -1}], 105]; f@# & /@ t (* Robert G. Wilson v, Dec 09 2016 *)
PROG
(Python)
from math import isqrt
from sympy import primepi, primerange, integer_nthroot, cyclotomic_poly
def A278567(n):
def f(x): return int(n+x-sum(primepi(x//(k*m))-b for a, k in enumerate(primerange(integer_nthroot(x, 3)[0]+1), 1) for b, m in enumerate(primerange(k+1, isqrt(x//k)+1), a+1)))
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
return max(int(abs(x[1][0][0])) for x in cyclotomic_poly(bisection(f)).as_terms()[0]) # Chai Wah Wu, Aug 31 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 26 2016
STATUS
approved