[go: up one dir, main page]

login
A278567
Maximal coefficient (in absolute value) of cyclotomic polynomial C(N,x), where N = n-th number which is a product of exactly three distinct primes = A007304(n).
8
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2
OFFSET
1,7
COMMENTS
E. Lehmer (1936) shows that this sequence is unbounded.
LINKS
Emma Lehmer, On the magnitude of the coefficients of the cyclotomic polynomial, Bull. Amer. Math. Soc. 42 (1936), 389-392.
EXAMPLE
The first 2 occurs in the famous C(105,x), which is x^48+x^47+x^46-x^43-x^42-2*x^41-x^40-x^39+x^36+x^35+x^34+x^33+x^32+x^31-x^28-x^26-x^24-x^22-x^20+x^17+x^16+x^15+x^14+x^13+x^12-x^9-x^8-2*x^7-x^6-x^5+x^2+x+1.
MAPLE
with(numtheory):
b:= proc(n) option remember; local k;
for k from 1+`if`(n=1, 0, b(n-1)) while
bigomega(k)<>3 or nops(factorset(k))<>3 do od; k
end:
a:= n-> max(map(abs, [coeffs(cyclotomic(b(n), x))])):
seq(a(n), n=1..120); # Alois P. Heinz, Nov 26 2016
MATHEMATICA
f[n_] := Max[ Abs[ CoefficientList[ Cyclotomic[n, x], x]]]; t = Take[ Sort@ Flatten@ Table[Prime@i Prime@j Prime@k, {i, 3, 35}, {j, 2, i -1}, {k, j -1}], 105]; f@# & /@ t (* Robert G. Wilson v, Dec 09 2016 *)
PROG
(Python)
from math import isqrt
from sympy import primepi, primerange, integer_nthroot, cyclotomic_poly
def A278567(n):
def f(x): return int(n+x-sum(primepi(x//(k*m))-b for a, k in enumerate(primerange(integer_nthroot(x, 3)[0]+1), 1) for b, m in enumerate(primerange(k+1, isqrt(x//k)+1), a+1)))
def bisection(f, kmin=0, kmax=1):
while f(kmax) > kmax: kmax <<= 1
while kmax-kmin > 1:
kmid = kmax+kmin>>1
if f(kmid) <= kmid:
kmax = kmid
else:
kmin = kmid
return kmax
return max(int(abs(x[1][0][0])) for x in cyclotomic_poly(bisection(f)).as_terms()[0]) # Chai Wah Wu, Aug 31 2024
CROSSREFS
See A278571 for smallest m such that a(m) = n.
See A278570 for another version.
Sequence in context: A303824 A106751 A325469 * A043279 A050433 A031263
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 26 2016
STATUS
approved