[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a269445 -id:a269445
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of subsets of {1,2,...,n} such that no two elements differ by 1, 4, or 5.
+10
13
1, 2, 3, 5, 8, 11, 14, 19, 25, 34, 49, 70, 99, 141, 196, 270, 375, 520, 723, 1014, 1420, 1985, 2777, 3874, 5396, 7526, 10496, 14642, 20449, 28555, 39860, 55647, 77660, 108356, 151214, 211028, 294507, 411071, 573763, 800796, 1117679, 1559895, 2177002
OFFSET
0,2
COMMENTS
a(n) is the number of compositions of n+5 into parts 1, 6, 8, 9, 12, 15, 18, 21, ...
Other sequences related to restricted combinations along with the sets of disallowed differences between subset elements: A000045 {1}, A011973 {1}, A006498 {2}, A006500 {3}, A031923 {4}, A000930 {1,2}, A102547 {1,2}, A130137 {1,3}, A263710 {1,4}, A374737 {1,5}, A079972 {2,3}, A224809 {2,4}, A351873 {3,4}, A224810 {3,6}, A224815 {4,8}, A003269 {1,2,3}, A180184 {1,2,3}, A317669 {1,2,4}, A351874 {1,3,4}, A177485 {1,3,5}, A121832 {2,3,4}, A375982 {2,3,5}, A375983 {2,4,5}, A224808 {2,4,6}, A224814 {3,6,9}, A003520 {1,2,3,4}, A375185 {1,2,3,5}, A375186 {1,2,4,5}, A259278 {2,3,4,5}, A224811 {2,4,6,8}, A005708 {1,2,3,4,5}, A276106 {2,3,4,5,6}, A224812 {2,4,6,8,10}, A005709 {1,2,3,4,5,6}, A322405 {2,3,4,5,6,7}, A224813 {2,4,6,8,10,12}, A005710 {1,2,3,4,5,6,7}, A368244 {2,3,4,5,6,7,8}, A000027 {1,2,..}, A269445 {1,2,..}\{12,25,..}, A008730 {1,2,..}\{11,23,..}, A008729 {1,2,..}\{10,21,..}, A008728 {1,2,..}\{9,19,..}, A008727 {1,2,..}\{8,17,..}, A008726 {1,2,..}\{7,15,..}, A008725 {1,2,..}\{6,13,..}, A038718 {1,..,5,7,..}, A008724 {1,2,..}\{5,11,..}, A008732 {1,2,..}\{4,9,..}, A179999 {1,2,3,5,7,..}, A001972 {1,2,..}\{3,7,..}, A001840 {1,2,..}\{2,5,..}, A052955 {1,3,..}, A004277 {2,3,..}, A186384 {1,2,..}\{1,6,..}, A186347 {1,2,..}\{1,5,..}, A339573 {1,2,..}\{1,4,..}, A002620 {2,4,..}, A019442 {3,4,..}, A006501 {3,6,..}, A008233 {4,8,..}, A008382 {5,10,..}, A008881 {6,12,..}, A009641 {7,14,..}, A009694 {8,16,..}, A009714 {9,18,..}, A354600 {10,20,..}.
[Keyword "less", because this comment should be moved to the Index to the OEIS, it is not appropriate here. - N. J. A. Sloane, Oct 25 2024]
LINKS
Michael A. Allen, Combinations without specified separations, Communications in Combinatorics and Optimization (in press).
FORMULA
a(n) = a(n-1) + a(n-3) - a(n-4) + a(n-6) + a(n-8) - a(n-11) for n >= 11.
G.f.: (1 + x + x^2 + x^3 + 2*x^4 + 2*x^5 - x^8 - x^9 - x^10)/(1 - x - x^3 + x^4 - x^6 - x^8 + x^11).
EXAMPLE
For n = 6, the 14 subsets are {}, {1}, {2}, {3}, {1,3}, {4}, {1,4}, {2,4}, {5}, {2,5}, {3,5}, {6}, {3,6}, {4,6}.
The a(4) = 8 compositions of 9 into parts 1, 6, 8, 9, ... are 1+1+1+1+1+1+1+1+1, 1+1+1+6, 1+1+6+1, 1+6+1+1, 6+1+1+1, 1+8, 8+1, 9.
MATHEMATICA
CoefficientList[Series[(1 + x + x^2 + x^3 + 2*x^4 + 2*x^5 - x^8 - x^9 - x^10)/(1 - x - x^3 + x^4 - x^6 - x^8 + x^11), {x, 0, 42}], x]
LinearRecurrence[{1, 0, 1, -1, 0, 1, 0, 1, 0, 0, -1}, {1, 2, 3, 5, 8, 11, 14, 19, 25, 34, 49}, 42]
CROSSREFS
See comments for other sequences related to restricted combinations.
Cf. A376743.
KEYWORD
easy,nonn,less
AUTHOR
Michael A. Allen, Sep 04 2024
STATUS
approved

Search completed in 0.005 seconds