[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A008732
Molien series for 3-dimensional group [2,n] = *22n.
11
1, 2, 3, 4, 5, 7, 9, 11, 13, 15, 18, 21, 24, 27, 30, 34, 38, 42, 46, 50, 55, 60, 65, 70, 75, 81, 87, 93, 99, 105, 112, 119, 126, 133, 140, 148, 156, 164, 172, 180, 189, 198, 207, 216, 225, 235, 245, 255, 265
OFFSET
0,2
LINKS
Brian O'Sullivan and Thomas Busch, Spontaneous emission in ultra-cold spin-polarised anisotropic Fermi seas, arXiv 0810.0231v1 [quant-ph], 2008. [Eq 8a, lambda=5]
FORMULA
a(n) = floor( (n+3)*(n+4)/10 ) = (n+2)*(n+5)/10 + b(n)/5 where b(n) = A010891(n-2) + 2*A092202(n-1) = 0, 1, 1, 0, -2, ... with period length 5.
G.f.: 1/((1-x)^2*(1-x^5)).
a(n) = a(n-5) + n + 1. - Paul Barry, Jul 14 2004
From Mitch Harris, Sep 08 2008: (Start)
a(n) = Sum_{j=0..n+5} floor(j/5).
a(n-5) = (1/2)floor(n/5)*(2*n - 3 - 5*floor(n/5)). (End)
a(n) = A130520(n+5). - Philippe Deléham, Apr 05 2013
a(5n) = A000566(n+1), a(5n+1) = A005476(n+1), a(5n+2) = A005475(n+1), a(5n+3) = A147875(n+2), a(5n+4) = A028895(n+1); these formulas correspond to the 5 columns of the array shown in example. - Philippe Deléham, Apr 05 2013
EXAMPLE
From Philippe Deléham, Apr 05 2013: (Start)
Stored in five columns:
1 2 3 4 5
7 9 11 13 15
18 21 24 27 30
34 38 42 46 50
55 60 65 70 75
81 87 93 99 105
112 119 126 133 140
(End)
MAPLE
A092202 := proc(n) op(1+(n mod 5), [0, 1, 0, -1, 0]) ; end proc:
A010891 := proc(n) op(1+(n mod 5), [1, -1, 0, 0, 0]) ; end proc:
A008732 := proc(n) (n+2)*(n+5)/10+(A010891(n-1)+2*A092202(n-1))/5 ; end proc:
MATHEMATICA
LinearRecurrence[{2, -1, 0, 0, 1, -2, 1}, {1, 2, 3, 4, 5, 7, 9}, 50] (* Jean-François Alcover, Jan 18 2018 *)
PROG
(Magma) [Floor((n+3)*(n+4)/10): n in [0..50] ]; // Vincenzo Librandi, Aug 21 2011
(PARI) a(n)=(n+3)*(n+4)\10 \\ Charles R Greathouse IV, Oct 07 2015
(Sage) [floor((n+3)*(n+4)/10) for n in (0..50)] # G. C. Greubel, Jul 30 2019
(GAP) List([0..50], n-> Int((n+3)*(n+4)/10)); # G. C. Greubel, Jul 30 2019
CROSSREFS
Cf. A130520.
Sequence in context: A135785 A262249 A248421 * A130520 A005706 A173345
KEYWORD
nonn,easy,tabf
STATUS
approved