[go: up one dir, main page]

login
Search: a267124 -id:a267124
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers k such that k and k+2 are both primitive practical numbers (A267124).
+20
5
28, 304, 306, 340, 460, 462, 858, 868, 1482, 1768, 1974, 2440, 2728, 2838, 2860, 3318, 3738, 4134, 4264, 4288, 4420, 4422, 5236, 5694, 6100, 6102, 7590, 8814, 9040, 9042, 10218, 11128, 11620, 11778, 12558, 12978, 13110, 14320, 14382, 14670, 15568, 16048, 16110
OFFSET
1,1
LINKS
EXAMPLE
28 is a term since 28 and 28 + 2 = 30 are both primitive practical numbers.
MATHEMATICA
f[p_, e_] := (p^(e + 1) - 1)/(p - 1); pracQ[fct_] := (ind = Position[fct[[;; , 1]]/(1 + FoldList[Times, 1, f @@@ Most@fct]), _?(# > 1 &)]) == {}; pracTestQ[fct_, k_] := Module[{f = fct}, f[[k, 2]] -= 1; pracQ[f]]; primPracQ[n_] := Module[{fct = FactorInteger[n]}, pracQ[fct] && AllTrue[Range@Length[fct], fct[[#, 2]] == 1 || ! pracTestQ[fct, #] &]]; Select[Range[2, 16200, 2], primPracQ[#] && primPracQ[# + 2] &]
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, May 14 2020
STATUS
approved
Primitive practical numbers (A267124) with a record gap to the next primitive practical number.
+20
2
1, 2, 6, 42, 104, 140, 1036, 1590, 2730, 7900, 10374, 19180, 22660, 23180, 26418, 105868, 114960, 139060, 295780, 403524, 482250, 1294144, 2468944, 4799058, 5379282, 19035500, 20233936, 21803860, 112406992, 789190976, 3520928922
OFFSET
1,2
COMMENTS
The record gap values are 1, 4, 14, 24, 36, 64, 74, 82, 84, 104, 106, 112, 120, 132, 154, 188, 204, 224, 236, 246, 258, 308, 326, 360, 418, 440, 452, 508, 674, 804, 846, ...
EXAMPLE
The first 8 primitive practical numbers are 1, 2, 6, 20, 28, 30, 42 and 66. The differences between these terms are 1, 4, 14, 8, 2, 12 and 24. The record gaps are 1, 4, 14 and 24, which occur after the terms 1, 2, 6 and 42.
MATHEMATICA
f[p_, e_] := (p^(e + 1) - 1)/(p - 1); pracQ[fct_] := (ind = Position[fct[[;; , 1]]/(1 + FoldList[Times, 1, f @@@ Most@fct]), _?(# > 1 &)]) == {}; pracTestQ[fct_, k_] := Module[{f = fct}, f[[k, 2]] -= 1; pracQ[f]]; primPracQ[n_] := Module[{fct = FactorInteger[n]}, pracQ[fct] && AllTrue[Range@Length[fct], fct[[#, 2]] == 1 || ! pracTestQ[fct, #] &]]; seq = {1}; m = 2; dm = 1; Do[If[primPracQ[n], d = n - m; If[d > dm, dm = d; AppendTo[seq, m]]; m = n], {n, 4, 10^5, 2}]; seq
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, May 14 2020
STATUS
approved
Number of primitive practical numbers (PPNs)(A267124) between successive primorial numbers (A002110) where the PPNs q are in the range A002110(n-1) < q <= A002110(n).
+20
1
1, 1, 3, 8, 108, 1107, 15788, 252603, 5121763
OFFSET
1,3
COMMENTS
The sequence of primorial numbers is a subset of the sequence of PPNs. Note that the sequence A002110 has an offset of 0 and A002110(0) = 1.
EXAMPLE
a(4) = 8, because between successive primorials 30 and 210 (that includes 210) is the sequence {42, 66, 78, 88, 104, 140, 204, 210} of PPNs. It contains 8 members.
MATHEMATICA
f[p_, e_] := (p^(e + 1) - 1)/(p - 1);
pracQ[fct_] := (ind=Position[fct[[;; , 1]]/(1+FoldList[Times, 1, f @@@ Most@fct]), _?(# > 1 &)])=={};
pracTestQ[fct_, k_] := Module[{f=fct}, f[[k, 2]]-= 1; pracQ[f]];
primPracQ[n_] := Module[{fct=FactorInteger[n]}, pracQ[fct]&&AllTrue[Range@Length[fct], fct[[#, 2]]==1||!pracTestQ[fct, #] &]];
pri[n_] := Module[{m}, If[n==1, 1, Product[Prime[m], {m, 1, n-1}]]];
plst=Join[{1}, Select[Range[2, 10^9, 2], primPracQ]]; pasc=<||>;
Do[AppendTo[pasc, <|plst[[n]]->n|>], {n, 1, Length@plst}]; Table[pasc[pri[n+1]]-pasc[pri[n]], {n, 1, 9}]
PROG
(PARI)
f(n) = factorback(primes(n)); \\ A002110
a(n) = sum(k=f(n-1)+1, f(n), is_A267124(k)); \\ Michel Marcus, Mar 28 2023
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Frank M Jackson, Mar 27 2023
STATUS
approved
Number of decompositions of 2n-1 into sums of a prime and a primitive practical number (A267124).
+20
1
0, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 3, 1, 1, 3, 4, 3, 3, 3, 2, 4, 3, 4, 5, 2, 3, 2, 2, 4, 4, 2, 3, 3, 3, 4, 6, 2, 3, 4, 4, 4, 5, 2, 6, 5, 2, 6, 3, 4, 5, 6, 2, 6, 8, 4, 4, 5, 4, 5, 4, 2, 5, 4, 4, 5, 6, 3, 5, 5, 4, 4, 6, 4, 4, 6, 2, 5, 6, 5, 3, 4, 3, 5, 7, 4, 3, 4, 5, 6, 5, 4, 4, 6
OFFSET
1,5
COMMENTS
It has been conjectured in comments for A267124 that every odd number, beginning with 3, is the sum of a prime number and a primitive practical number. That is a(n) > 0 for n >= 2. This sequence is analogous to A045917 for the Goldbach conjecture.
The graph of this sequence forms a comet that is analogous to Goldbach's comet. - Frank M Jackson, Sep 18 2024
LINKS
EXAMPLE
a(5) = 2 because 9 can be decomposed twice as 2+7, 6+3 with 3, 7 prime and 2, 6 primitive practical.
MATHEMATICA
PracticalQ[n_] := Module[{f, p, e, prod=1, ok=True}, If[n<1||(n>1&&OddQ[n]), False, If[n==1, True, f=FactorInteger[n]; {p, e}=Transpose[f]; Do[If[p[[i]]>1+DivisorSigma[1, prod], ok=False; Break[]]; prod=prod*p[[i]]^e[[i]], {i, Length[p]}]; ok]]];
DivFreeQ[n_] := Module[{plst=First/@Select[FactorInteger[n], #[[2]]>1 &], m, ok=False}, Do[If[!PracticalQ[n/plst[[m]]], ok=True, ok=False; Break[]], {m, 1, Length@plst}]; ok];
PPracticalQ[n_] := PracticalQ[n]&&(SquareFreeQ[n]||DivFreeQ[n]);
f[n_] := Select[2n-1-Prime[Range[PrimePi[2n-1]]], PPracticalQ]; Table[Length@f[n], {n, 1, 200}]
PROG
(PARI) a(n) = my(nn=2*n-1); sum (i=1, nn, isprime(i) && is_A267124(nn-i)); \\ Michel Marcus, Jun 27 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Frank M Jackson, Jun 26 2024
STATUS
approved
Number of primes between successive primitive practical numbers. That is, number of primes p such that A267124(n) < p <= A267124(n+1).
+20
0
1, 2, 5, 1, 1, 3, 5, 3, 2, 4, 7, 12, 0, 1, 2, 6, 3, 0, 4, 0, 1, 3, 2, 0, 1, 3, 1, 2, 2, 3, 8, 1, 1, 1, 3, 3, 1, 1, 1, 2, 2, 2, 8, 3, 4, 3, 3, 4, 1, 7, 2, 0, 7, 1, 1, 0, 4, 4, 4, 4, 7, 1, 12, 1, 1, 1, 0, 5, 3, 2, 2, 3, 1, 4, 3, 2, 0, 2, 4, 3, 0, 9, 1, 1, 1, 3, 1, 1, 2, 1, 2, 5, 13, 0, 1, 4, 6, 0, 4
OFFSET
1,2
EXAMPLE
a(3) = 5 because between the 3rd and 4th primitive practical numbers, namely 6 and 20 there are 5 primes. They are 7, 11, 13, 17 and 19.
MATHEMATICA
lst=Last/@ReadList["https://oeis.org/A267124/b267124.txt", {Number, Number}]; seq=Table[PrimePi[lst[[n+1]]]-PrimePi[lst[[n]]], {n, 1, Length@lst-1}]; seq[[1;; 100]]
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Frank M Jackson, Sep 22 2024
STATUS
approved
Primorial numbers (first definition): product of first n primes. Sometimes written prime(n)#.
(Formerly M1691 N0668)
+10
1779
1, 2, 6, 30, 210, 2310, 30030, 510510, 9699690, 223092870, 6469693230, 200560490130, 7420738134810, 304250263527210, 13082761331670030, 614889782588491410, 32589158477190044730, 1922760350154212639070, 117288381359406970983270, 7858321551080267055879090
OFFSET
0,2
COMMENTS
See A034386 for the second definition of primorial numbers: product of primes in the range 2 to n.
a(n) is the least number N with n distinct prime factors (i.e., omega(N) = n, cf. A001221). - Lekraj Beedassy, Feb 15 2002
Phi(n)/n is a new minimum for each primorial. - Robert G. Wilson v, Jan 10 2004
Smallest number stroked off n times after the n-th sifting process in an Eratosthenes sieve. - Lekraj Beedassy, Mar 31 2005
Apparently each term is a new minimum for phi(x)*sigma(x)/x^2. 6/Pi^2 < sigma(x)*phi(x)/x^2 < 1 for n > 1. - Jud McCranie, Jun 11 2005
Let f be a multiplicative function with f(p) > f(p^k) > 1 (p prime, k > 1), f(p) > f(q) > 1 (p, q prime, p < q). Then the record maxima of f occur at n# for n >= 1. Similarly, if 0 < f(p) < f(p^k) < 1 (p prime, k > 1), 0 < f(p) < f(q) < 1 (p, q prime, p < q), then the record minima of f occur at n# for n >= 1. - David W. Wilson, Oct 23 2006
Wolfe and Hirshberg give ?, ?, ?, ?, ?, 30030, ?, ... as a puzzle.
Records in number of distinct prime divisors. - Artur Jasinski, Apr 06 2008
For n >= 2, the digital roots of a(n) are multiples of 3. - Parthasarathy Nambi, Aug 19 2009 [with corrections by Zak Seidov, Aug 30 2015]
Denominators of the sum of the ratios of consecutive primes (see A094661). - Vladimir Joseph Stephan Orlovsky, Oct 24 2009
Where record values occur in A001221. - Melinda Trang (mewithlinda(AT)yahoo.com), Apr 15 2010
It can be proved that there are at least T prime numbers less than N, where the recursive function T is: T = N - N*Sum_{i = 0..T(sqrt(N))} A005867(i)/A002110(i). This can show for example that at least 0.16*N numbers are primes less than N for 29^2 > N > 23^2. - Ben Paul Thurston, Aug 23 2010
The above comment from Parthasarathy Nambi follows from the observation that digit summing produces a congruent number mod 9, so the digital root of any multiple of 3 is a multiple of 3. prime(n)# is divisible by 3 for n >= 2. - Christian Schulz, Oct 30 2013
The peaks (i.e., local maximums) in a graph of the number of repetitions (i.e., the tally of values) vs. value, as generated by taking the differences of all distinct pairs of odd prime numbers within a contiguous range occur at regular periodic intervals given by the primorial numbers 6 and greater. Larger primorials yield larger (relative) peaks, however the range must be >50% larger than the primorial to be easily observed. Secondary peaks occur at intervals of those "near-primorials" divisible by 6 (e.g., 42). See A259629. Also, periodicity at intervals of 6 and 30 can be observed in the local peaks of all possible sums of two, three or more distinct odd primes within modest contiguous ranges starting from p(2) = 3. - Richard R. Forberg, Jul 01 2015
If a number k and a(n) are coprime and k < (prime(n+1))^b < a(n), where b is an integer, then k has fewer than b prime factors, counting multiplicity (i.e., bigomega(k) < b, cf. A001222). - Isaac Saffold, Dec 03 2017
If n > 0, then a(n) has 2^n unitary divisors (A034444), and a(n) is a record; i.e., if k < a(n) then k has fewer unitary divisors than a(n) has. - Clark Kimberling, Jun 26 2018
Unitary superabundant numbers: numbers k with a record value of the unitary abundancy index, A034448(k)/k > A034448(m)/m for all m < k. - Amiram Eldar, Apr 20 2019
Psi(n)/n is a new maximum for each primorial (psi = A001615) [proof in link: Patrick Sole and Michel Planat, proposition 1 page 2]; compare with comment 2004: Phi(n)/n is a new minimum for each primorial. - Bernard Schott, May 21 2020
The term "primorial" was coined by Harvey Dubner (1987). - Amiram Eldar, Apr 16 2021
a(n)^(1/n) is approximately (n log n)/e. - Charles R Greathouse IV, Jan 03 2023
Subsequence of A267124. - Frank M Jackson, Apr 14 2023
REFERENCES
A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 50.
P. Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 4.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
D. Wolfe and S. Hirshberg, Underspecified puzzles, in Tribute to A Mathemagician, Peters, 2005, pp. 73-74.
LINKS
Alex Ermolaev, Table of n, a(n) for n = 0..350 (terms up to a(100) from T. D. Noe)
Iskander Aliev, Jesús De Loera, Fritz Eisenbrand, Timm Oertel, and Robert Weismantel, The Support of Integer Optimal Solutions, arXiv:1712.08923 [math.OC], 2017.
C. K. Caldwell, The Prime Glossary, Primorial.
G. Caveney, J.-L. Nicolas and J. Sondow, On SA, CA, and GA numbers, arXiv:1112.6010 [math.NT], 2011-2012; Ramanujan J., 29 (2012), 359-384.
Harvey Dubner, Factorial and primorial primes, J. Rec. Math., Vol. 19, No. 3 (1987), pp. 197-203. (Annotated scanned copy)
S. W. Golomb, The evidence for Fortune's conjecture, Math. Mag. 54 (1981), 209-210.
Daniel J. Greenhoe, Frames and Bases: Structure and Design, Version 0.20, Signal Processing ABCs series (2019) Vol. 4, pp. 7, 81.
Daniel J. Greenhoe, A Book Concerning Transforms, Version 0.10, Signal Processing ABCs series (2019) Vol. 5, see page 7.
A. W. Lin and S. Zhou, A linear-time algorithm for the orbit problem over cyclic groups, preprint, CONCUR 2014 - Concurrency Theory, Volume 8704 of the series Lecture Notes in Computer Science pp. 327-341.
A. W. Lin and S. Zhou, A linear-time algorithm for the orbit problem over cyclic groups, CONCUR 2014 - Concurrency Theory, Lecture Notes in Computer Science, Volume 8704, 2014, pp. 327-341.
Thomas Morrill, Further Development of "Non-Pythagorean" Musical Scales Based on Logarithms, arXiv:1804.08067 [math.HO], 2018.
J.-L. Nicolas, Petites valeurs de la fonction d'Euler, J. Number Theory 17, no.3 (1983), 375-388.
Patrick Sole and Michel Planat, The Robin inequality for 7-free integers, INTEGERS, 2011, #A65.
Andrew V. Sutherland, Order Computations in Generic Groups, Ph. D. Dissertation, Math. Dept., M.I.T., 2007.
G. Villemin's Almanach of Numbers, Primorielle.
Eric Weisstein's World of Mathematics, Primorial.
FORMULA
Asymptotic expression for a(n): exp((1 + o(1)) * n * log(n)) where o(1) is the "little o" notation. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 08 2001
a(n) = A054842(A002275(n)).
Binomial transform = A136104: (1, 3, 11, 55, 375, 3731, ...). Equals binomial transform of A121572: (1, 1, 3, 17, 119, 1509, ...). - Gary W. Adamson, Dec 14 2007
a(0) = 1, a(n+1) = prime(n)*a(n). - Juri-Stepan Gerasimov, Oct 15 2010
a(n) = Product_{i=1..n} A000040(i). - Jonathan Vos Post, Jul 17 2008
a(A051838(n)) = A116536(n) * A007504(A051838(n)). - Reinhard Zumkeller, Oct 03 2011
A000005(a(n)) = 2^n. - Carlos Eduardo Olivieri, Jun 16 2015
a(n) = A035345(n) - A005235(n) for n > 0. - Jonathan Sondow, Dec 02 2015
For all n >= 0, a(n) = A276085(A000040(n+1)), a(n+1) = A276086(A143293(n)). - Antti Karttunen, Aug 30 2016
A054841(a(n)) = A002275(n). - Michael De Vlieger, Aug 31 2016
a(n) = A270592(2*n+2) - A270592(2*n+1) if 0 <= n <= 4 (conjectured for all n by Alon Kellner). - Jonathan Sondow, Mar 25 2018
Sum_{n>=1} 1/a(n) = A064648. - Amiram Eldar, Oct 16 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = A132120. - Amiram Eldar, Apr 12 2021
EXAMPLE
a(9) = 23# = 2*3*5*7*11*13*17*19*23 = 223092870 divides the difference 5283234035979900 in the arithmetic progression of 26 primes A204189. - Jonathan Sondow, Jan 15 2012
MAPLE
A002110 := n -> mul(ithprime(i), i=1..n);
MATHEMATICA
FoldList[Times, 1, Prime[Range[20]]]
primorial[n_] := Product[Prime[i], {i, n}]; Array[primorial, 20] (* José María Grau Ribas, Feb 15 2010 *)
Join[{1}, Denominator[Accumulate[1/Prime[Range[20]]]]] (* Harvey P. Dale, Apr 11 2012 *)
PROG
(Haskell)
a002110 n = product $ take n a000040_list
a002110_list = scanl (*) 1 a000040_list
-- Reinhard Zumkeller, Feb 19 2012, May 03 2011
(Magma) [1] cat [&*[NthPrime(i): i in [1..n]]: n in [1..20]]; // Bruno Berselli, Oct 24 2012
(Magma) [1] cat [&*PrimesUpTo(p): p in PrimesUpTo(60)]; // Bruno Berselli, Feb 08 2015
(PARI) a(n)=prod(i=1, n, prime(i)) \\ Washington Bomfim, Sep 23 2008
(PARI) p=1; for (n=0, 100, if (n, p*=prime(n)); write("b002110.txt", n, " ", p) ) \\ Harry J. Smith, Nov 13 2009
(PARI) a(n) = factorback(primes(n)) \\ David A. Corneth, May 06 2018
(Python)
from sympy import primorial
def a(n): return 1 if n < 1 else primorial(n)
[a(n) for n in range(51)] # Indranil Ghosh, Mar 29 2017
(Sage) [sloane.A002110(n) for n in (1..20)] # Giuseppe Coppoletta, Dec 05 2014
(Scheme) ; with memoization-macro definec
(definec (A002110 n) (if (zero? n) 1 (* (A000040 n) (A002110 (- n 1))))) ;; Antti Karttunen, Aug 30 2016
CROSSREFS
A034386 gives the second version of the primorial numbers.
Subsequence of A005117 and of A064807. Apart from the first term, a subsequence of A083207.
Cf. A001615, A002182, A002201, A003418, A005235, A006862, A034444 (unitary divisors), A034448, A034387, A033188, A035345, A035346, A036691 (compositorial numbers), A049345 (primorial base representation), A057588, A060735 (and integer multiples), A061742 (squares), A072938, A079266, A087315, A094348, A106037, A121572, A053589, A064648, A132120, A260188.
Cf. A061720 (first differences), A143293 (partial sums).
Cf. also A276085, A276086.
The following fractions are all related to each other: Sum 1/n: A001008/A002805, Sum 1/prime(n): A024451/A002110 and A106830/A034386, Sum 1/nonprime(n): A282511/A282512, Sum 1/composite(n): A250133/A296358.
KEYWORD
nonn,easy,nice,core
STATUS
approved
Primitive practical numbers of the form 2^i * prime(k).
+10
5
6, 20, 28, 88, 104, 272, 304, 368, 464, 496, 1184, 1312, 1376, 1504, 1696, 1888, 1952, 4288, 4544, 4672, 5056, 5312, 5696, 6208, 6464, 6592, 6848, 6976, 7232, 8128, 16768, 17536, 17792, 19072, 19328, 20096, 20864, 21376, 22144, 22912, 23168, 24448, 24704, 25216
OFFSET
1,1
COMMENTS
Intersection of A267124 and A100368.
a(n) is a number of the form 2^i * prime(k) for i > 0 and A007053(i) < k <= A007053(i+1).
Terms are pseudoperfect numbers, A005835 and are also primitive pseudoperfect numbers, A006036.
LINKS
FORMULA
a(n) = 2^floor(log_2(prime(n+1))) * prime(n+1).
MATHEMATICA
a[n_] := (p = Prime[n+1]) * 2^Floor[Log2[p]]; Array[a, 50] (* Amiram Eldar, Sep 22 2019 *)
PROG
(PARI) isok(n) = is_A100368(n) && is_A267124(n); \\ Michel Marcus, Jun 19 2019
KEYWORD
nonn
AUTHOR
Miko Labalan, Jun 19 2019
STATUS
approved
For the odd number 2n + 1, the least primitive practical number r such that 2n + 1 = r + p where p is prime.
+10
1
1, 2, 2, 2, 6, 2, 2, 6, 2, 2, 6, 2, 20, 6, 2, 2, 6, 6, 2, 28, 2, 2, 6, 2, 20, 6, 2, 20, 6, 2, 2, 6, 6, 2, 28, 2, 2, 6, 6, 2, 30, 2, 20, 6, 2, 20, 6, 30, 2, 28, 2, 2, 6, 2, 2, 6, 2, 20, 6, 20, 20, 28, 20, 2, 28, 2, 28, 6, 2, 2, 6, 6, 20, 42, 2, 2, 6, 6, 2, 30, 6, 2, 28, 2, 20, 6, 2, 20, 6, 2, 2, 6, 6, 88, 28
OFFSET
1,2
COMMENTS
Conjecture: every odd number, beginning with 3, is the sum of a prime number and a primitive practical number. This is a tighter conjecture than that posed by Hal M. Switkay (see comments of A005153).
EXAMPLE
a(61) = 20, because 61st odd number is 123 = {(10+113), (14+109), (16+107), (20+103), ...} and 20 is the least primitive practical number. 10 and 14 are not practical numbers and 16 is practical but not primitive.
MATHEMATICA
PracticalQ[n_] := Module[{f, p, e, prod=1, ok=True}, If[n<1 || (n>1 && OddQ[n]), False, If[n==1, True, f=FactorInteger[n]; {p, e}=Transpose[f]; Do[If[p[[i]]>1+DivisorSigma[1, prod], ok=False; Break[]]; prod=prod*p[[i]]^e[[i]], {i, Length[p]}]; ok]]];
DivFreeQ[n_] := Module[{plst=First/@Select[FactorInteger[n], #[[2]]>1 &], m, ok=False}, Do[If[! PracticalQ[n/plst[[m]]], ok=True, ok=False; Break[]], {m, 1, Length@plst}]; ok];
PPracticalQ[n_] := PracticalQ[n] && (SquareFreeQ[n] || DivFreeQ[n]);
part[n_, m_] := Module[{p = NextPrime[n, -m], d}, d = n - p; {d, p}];
find[n_] := Module[{m=1}, While[!PPracticalQ[part[n, m][[1]]], m++]; part[n, m]];
Table[find[2 n + 1][[1]], {n, 1, 1000}]
PROG
(Python)
from sympy import prevprime, factorint
# See A005153 for is_A005153(). - M. F. Hasler, Jun 19 2023
def is_primitive(n):
for i in range(0, len(list(factorint(n)))):
if list(factorint(n).values())[i] > 1:
if is_A005153(n//list(factorint(n))[i]): return False
return True
def is_A267124(n):
if is_A005153(n) and is_primitive(n) : return True
A361301 = []
for odds in range(3, 192, 2):
prime = prevprime(odds)
while not is_A267124(odds - prime): prime = prevprime(prime)
A361301.append(odds - prime)
print(A361301) # Karl-Heinz Hofmann, Mar 10 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Frank M Jackson, Mar 08 2023
STATUS
approved
Least positive integer k with k primitive practical and k*n practical.
+10
0
1, 1, 2, 1, 6, 1, 6, 1, 2, 2, 6, 1, 6, 2, 2, 1, 20, 1, 20, 1, 2, 6, 20, 1, 6, 6, 2, 1, 20, 1, 20, 1, 2, 6, 6, 1, 20, 6, 2, 1, 20, 1, 20, 2, 2, 6, 28, 1, 6, 2, 6, 2, 28, 1, 6, 1, 6, 6, 30, 1, 30, 20, 2, 1, 6, 1, 30, 6, 6, 2, 30, 1, 30, 20, 2, 6, 6, 1, 42, 1, 2, 20, 42, 1, 6, 20, 6, 1, 42, 1, 6, 6, 6, 20, 6, 1, 42, 2, 2, 1
OFFSET
1,3
COMMENTS
For all integers n>0 there exists k such that k*n is practical and k is primitive practical. For example, n*prime(f)# is practical where k = prime(f)# = A002110(f) is a primorial number and f is the prime index of the largest prime number in the factorization of n. All primorials are primitive practical numbers. The sequence above gives least k.
EXAMPLE
a(5)=6 since 6*5=30 is practical and 6 is primitive practical. Also 4*5=20 is practical but 4 is not primitive practical.
MATHEMATICA
PracticalQ[n_] := Module[{f, p, e, prod=1, ok=True}, If[n<1||(n>1&&OddQ[n]), False, If[n==1, True, f=FactorInteger[n]; {p, e}=Transpose[f]; Do[If[p[[i]]>1+DivisorSigma[1, prod], ok=False; Break[]]; prod=prod*p[[i]]^e[[i]], {i, Length[p]}]; ok]]];
DivFreeQ[n_] := Module[{plst=First/@Select[FactorInteger[n], #[[2]]>1 &], m, ok=False}, Do[If[!PracticalQ[n/plst[[m]]], ok = True, ok = False; Break[]], {m, 1, Length@plst}]; ok];
PPracticalQ[n_] := PracticalQ[n]&&(SquareFreeQ[n]||DivFreeQ[n]);
lst = {}; Do[m=0; While[!PPracticalQ[m]||(!PracticalQ[m*n]&&m<10000), m++]; AppendTo[lst, m], {n, 1, 500}]; lst
CROSSREFS
KEYWORD
nonn
AUTHOR
Frank M Jackson, May 03 2023
STATUS
approved
Primitive practical numbers of the form 2 * 3^i * prime(k).
+10
0
30, 42, 66, 78, 306, 342, 414, 522, 558, 666, 2214, 2322, 2538, 2862, 3186, 3294, 3618, 3834, 3942, 4266, 4482, 4806, 5238, 5454, 5562, 5778, 5886, 6102, 20574, 21222, 22194, 22518, 24138, 24462, 25434, 26406, 27054, 28026, 28998, 29322, 30942, 31266, 31914
OFFSET
1,1
COMMENTS
This sequence and A308710 are both non-overlapping subsets of A267124.
a(n) is a number of the form 2 * 3^i * prime(k) for i > 0 and b(i) < k <= b(i+1) where b(n) = Sum_{m=2..n+1} A233919(m).
Terms are pseudoperfect numbers, A005835, but are not primitive pseudoperfect numbers, A006036.
Since no term is a square or twice a square, there are no terms k such that sigma(k) is odd. Therefore, according to Proposition 10 by Rao/Peng (see their JNT paper at A083207) all terms are Zumkeller numbers. - Ivan N. Ianakiev, Nov 28 2023
FORMULA
a(n) = 2 * 3^(floor(log_3(2*prime(n+2)))-1) * prime(n+2).
MATHEMATICA
a[n_]:=2*3^(Floor[Log[2*Prime[n+2]]/Log[3]]-1)*Prime[n+2]; Array[a, 43] (* Stefano Spezia, Nov 19 2023 *)
KEYWORD
nonn
AUTHOR
Miko Labalan, Nov 19 2023
STATUS
approved

Search completed in 0.016 seconds