[go: up one dir, main page]

login
Search: a250177 -id:a250177
     Sort: relevance | references | number | modified | created      Format: long | short | data
Positive integers k such that k^6 + k^5 + k^4 + k^3 + k^2 + k + 1 is prime.
+10
37
1, 2, 3, 5, 6, 13, 14, 17, 26, 31, 38, 40, 46, 56, 60, 61, 66, 68, 72, 73, 80, 87, 89, 93, 95, 115, 122, 126, 128, 146, 149, 156, 158, 160, 163, 180, 186, 192, 203, 206, 208, 220, 221, 235, 237, 238, 251, 264, 266, 280, 282, 290, 294, 300, 303, 320, 341, 349, 350
OFFSET
1,2
COMMENTS
The corresponding primes are A088550. - Bernard Schott, Dec 20 2012
k = 5978493 * 2^150006 - 1 is an example of a very large term of this sequence. The generated prime is proved by the N-1 method (because k is prime and k*(k+1) is fully factored and this provides for an exactly 33.33...% factorization for Phi_7(k) - 1). - Serge Batalov, Mar 13 2015
LINKS
EXAMPLE
2 is in the sequence because 2^6 + 2^5 + 2^4 + 2^3 + 2^2 + 2 + 1 = 127, which is prime.
MAPLE
A100330 := proc(n)
option remember;
local a;
if n = 1 then
1;
else
for a from procname(n-1)+1 do
if isprime(numtheory[cyclotomic](7, a)) then
return a;
end if;
end do:
end if;
end proc:
seq(A100330(n), n=1..30) ; # R. J. Mathar, Feb 07 2014
MATHEMATICA
Select[Range[350], PrimeQ[Sum[ #^i, {i, 0, 6}]] &] (* Ray Chandler, Nov 17 2004 *)
Do[If[PrimeQ[n^6 + n^5 + n^4 + n^3 + n^2 + n + 1], Print[n]], {n, 1, 500}] (* Vincenzo Librandi, Feb 08 2014 *)
PROG
(Magma) [n: n in [1..500]| IsPrime(n^6 + n^5 + n^4 + n^3 + n^2 + n + 1)]; // Vincenzo Librandi, Feb 08 2014
(PARI) is(n)=isprime(polcyclo(7, n)) \\ Charles R Greathouse IV, Apr 28 2015
CROSSREFS
Cf. A100331, A250174 (Phi_14(n) = n^6 - n^5 + n^4 - n^3 + n^2 - n + 1 primes; these two sequences can also be considered an extension of each other into negative n values), A250177 (Phi_21(n) primes).
KEYWORD
nonn
AUTHOR
Ray G. Opao, Nov 16 2004
STATUS
approved
Numbers n such that Phi_14(n) is prime, where Phi is the cyclotomic polynomial.
+10
21
2, 3, 10, 11, 14, 15, 16, 17, 18, 21, 24, 25, 29, 37, 43, 44, 46, 49, 52, 54, 61, 66, 72, 73, 78, 84, 86, 87, 99, 101, 106, 114, 115, 128, 133, 135, 136, 143, 145, 148, 164, 169, 170, 173, 200, 219, 224, 226, 228, 231, 234, 240, 248, 255, 262, 275, 281, 282, 298, 301
OFFSET
1,1
COMMENTS
n = 9069 * 2^64163 + 1 is an example of a rather large member of this sequence. The generated 115914 decimal digit prime is proved by the N-1 method (because n is prime and n*(n-1) is fully factored and this provides for an exactly 33.33...% factorization for Phi_14(n) - 1). - Serge Batalov, Mar 13 2015
LINKS
EXAMPLE
2 is in the sequence because 2^6-2^5+2^4-2^3+2^2-2+1 = 43 which is prime.
MATHEMATICA
a250174[n_] := Select[Range[n], PrimeQ@Cyclotomic[14, #] &]; a250174[256]
PROG
(PARI) isok(n) = isprime(polcyclo(14, n)); \\ Michel Marcus, Mar 13 2015
CROSSREFS
See A250177 for cross-references, A100330 (Phi_7(n) = n^6 + n^5 + n^4 + n^3 + n^2 + n + 1 primes; these two sequences can also be considered an extension of each other into negative n values), A250177 (Phi_21(n) primes).
KEYWORD
nonn
AUTHOR
Eric Chen, Dec 24 2014
STATUS
approved
Numbers k such that Phi_22(k) is prime, where Phi is the cyclotomic polynomial.
+10
19
2, 6, 12, 13, 23, 24, 26, 35, 62, 69, 91, 105, 147, 160, 163, 183, 185, 193, 229, 232, 233, 236, 248, 262, 269, 280, 294, 303, 315, 330, 376, 394, 426, 430, 440, 464, 469, 491, 492, 508, 537, 625, 629, 647, 653, 666, 752, 772, 775, 786, 788, 832, 840, 852, 854, 855, 859, 905, 922, 972, 993, 998
OFFSET
1,1
COMMENTS
Numbers k such that (k^11+1)/(k+1) is a prime. - Vincenzo Librandi, May 21 2018
LINKS
MATHEMATICA
a250178[n_] := Select[Range[n], PrimeQ@Cyclotomic[22, #] &]; a250178[1000] (* Michael De Vlieger, Dec 25 2014 *)
PROG
(PARI) isok(n) = isprime(polcyclo(22, n)); \\ Michel Marcus, Sep 29 2015
(Magma) [n: n in [1..1000]| IsPrime((n^11+1) div (n+1))]; // Vincenzo Librandi, May 21 2018
CROSSREFS
See A250177 for references.
KEYWORD
nonn
AUTHOR
Eric Chen, Dec 24 2014
STATUS
approved
Numbers n such that Phi_24(n) is prime, where Phi is the cyclotomic polynomial.
+10
2
2, 3, 5, 6, 10, 13, 14, 15, 18, 25, 26, 27, 31, 34, 37, 39, 40, 42, 44, 46, 49, 50, 53, 59, 62, 63, 65, 68, 69, 75, 76, 77, 83, 87, 99, 100, 102, 104, 107, 110, 142, 152, 161, 166, 174, 175, 184, 187, 188, 191, 192, 199, 204, 207, 208, 213, 215, 222, 224, 227, 238, 244, 245, 247, 250, 256, 259, 263, 264, 265, 268, 274, 279, 286, 289, 303, 310, 311, 312, 314, 327, 332, 337, 339, 350, 353, 363, 366
OFFSET
1,1
LINKS
MATHEMATICA
a250179[n_] := Select[Range[n], PrimeQ@Cyclotomic[24, #] &]; a250179[366] (* Michael De Vlieger, Dec 25 2014 *)
PROG
(PARI) {is(n)=isprime(polcyclo(24, n))};
for(n=1, 1000, if(is(n), print1(n, ", "))) \\ G. C. Greubel, May 20 2018
CROSSREFS
See A250177 for references.
KEYWORD
nonn
AUTHOR
Eric Chen, Dec 24 2014
STATUS
approved
Numbers n such that Phi_25(n) is prime, where Phi is the cyclotomic polynomial.
+10
2
1, 22, 33, 39, 43, 62, 74, 134, 142, 167, 212, 238, 287, 313, 335, 369, 414, 415, 418, 432, 509, 604, 679, 697, 770, 782, 815, 859, 874, 895, 897, 924, 1039, 1048, 1070, 1085, 1134, 1145, 1170, 1177, 1212, 1239, 1240, 1262, 1339, 1347, 1364, 1374, 1407, 1413, 1414, 1449
OFFSET
1,2
LINKS
MATHEMATICA
a250180[n_] := Select[Range[n], PrimeQ@Cyclotomic[25, #] &]; a250180[256]
PROG
(PARI) isok(n) = isprime(polcyclo(25, n)); \\ Michel Marcus, Dec 27 2014
CROSSREFS
See A250177 for references.
KEYWORD
nonn
AUTHOR
Eric Chen, Dec 26 2014
STATUS
approved

Search completed in 0.005 seconds