[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a191456 -id:a191456
     Sort: relevance | references | number | modified | created      Format: long | short | data
Primes p such that the polynomial x^2+x+p generates only primes for x=1..11.
+10
8
17, 41, 1761702947, 8776320587, 10102729577, 11085833111, 177558051107, 273373448057, 473787509537, 557149355507, 715464238661, 1359854730821, 2131528031441, 2170341748697, 2236159108277, 2308235320997, 2751203698151, 3247566894821, 3288002848511, 3424305123047
OFFSET
1,1
COMMENTS
Subsequence of A191457.
The sequence is infinite under Dickson's conjecture. - Charles R Greathouse IV, Oct 11 2011
LINKS
Charles R Greathouse IV and Zak Seidov, Table of n, a(n) for n = 1..79
PROG
(PARI) is(n)=for(x=0, 11, if(!isprime(x^2+x+n), return(0))); 1 \\ Charles R Greathouse IV, Sep 14 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Zak Seidov, Jun 02 2011
EXTENSIONS
a(12)-a(20) from Charles R Greathouse IV, Oct 17 2011
STATUS
approved
Primes p such that the polynomial x^2+x+p generates only primes for x=1..10.
+10
7
17, 41, 180078317, 1278189947, 1761702947, 1829187287, 5862143447, 6369321857, 7226006861, 8776320587, 10102729577, 11085833111, 12412643261, 50626299797, 53039299211, 72355485857, 74621287901, 76233413141, 81948881447, 115826556611, 129077263697
OFFSET
1,1
COMMENTS
Dickson's conjecture implies that this sequence is infinite. [Charles R Greathouse IV, Jun 03 2011]
PROG
(PARI) isokp(p) = {for (n=1, 10, if (! isprime(subst(x^2+x+p, x, n)), return (0)); ); 1; }
lista(nn) = {forprime (p=1, nn, if (isokp(p), print1(p, ", ")); ); } \\ Michel Marcus, Jan 05 2015
CROSSREFS
Subsequence of A191456. Cf. A187060, A190800.
KEYWORD
nonn
AUTHOR
Zak Seidov, Jun 02 2011
STATUS
approved
Primes of the form k^2 + k + 844427.
+10
5
844427, 844429, 844433, 844439, 844447, 844457, 844469, 844483, 844499, 844517, 844609, 844733, 844769, 844847, 845027, 845129, 845183, 845357, 845833, 845909, 845987, 846067, 846149, 846233, 846407, 846589, 846779, 846877, 846977, 847079, 847507, 847967, 848087
OFFSET
1,1
COMMENTS
844427 is the fourth term of A190800 and of A191456. - Arkadiusz Wesolowski, Jun 25 2011
LINKS
Vincenzo Librandi and Arkadiusz Wesolowski, Table of n, a(n) for n = 1..10000 (the first 210 terms are from Vincenzo Librandi)
G. L. Honaker, Jr. and Chris Caldwell, Prime Curios! 844427
Eric Weisstein's World of Mathematics, Prime-Generating Polynomial
MATHEMATICA
Select[Table[n^2 + n + 844427, {n, 0, 60}], PrimeQ] (* Arkadiusz Wesolowski, Mar 04 2011 *)
PROG
(Magma) [n^2+n+844427 : n in [0..60] | IsPrime(n^2+n+844427)]; // Bruno Berselli, Feb 23 2011
(PARI) for(n=0, 60, if(isprime(x=(n^2+n+844427)), print1(x, ", "))); \\ Arkadiusz Wesolowski, Mar 02 2011
(PARI) select(isprime, vector(1000, n, n^2+n+844427)) \\ Charles R Greathouse IV, Feb 23 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved
Least q > 0 such that min { x >= 0 | q + prime(n)*x + x^2 is composite } is a (local) maximum, cf. A273756 & A273770.
+10
4
43, 47, 53, 71, 83, 113, 131, 173, 251, 281, 383, 461, 503, 593, 743, 73361, 73421, 3071069, 15949847, 76553693, 2204597, 1842719, 246407807, 986578883, 73975907, 4069235123, 1244414939, 25213427, 656856899, 30641069183, 8221946477, 41730358853, 10066886927, 285340609997, 6232338461
OFFSET
2,1
COMMENTS
This is a subsequence of A273756 which considers all odd numbers (2n+1) instead of only prime(n) as coefficients of the linear term.
All terms are necessarily prime, since this is necessary and sufficient to get a prime for x = 0.
The respective minima (= number of consecutive primes for x = 0, 1, 2, ...) are given in A273597.
It has been pointed out by Don Reble that the prime k-tuple conjecture predicts infinitely long sequences of primes of the given form, therefore we consider the "local" maxima, for q below some appropriate (large) limit: see sequences A273756 & A273770 for further details. - M. F. Hasler, Feb 17 2020
FORMULA
a(n) = A273756((prime(n) - 1)/2). - M. F. Hasler, Feb 17 2020
PROG
(PARI) A273595(n)=A273756(prime(n)\2) \\ changed Feb 17 2020
CROSSREFS
Cf. also A002837 (n such that n^2-n+41 is prime), A007634 (n such that n^2+n+41 is composite), A005846 (primes of form n^2+n+41), A097823, A144051, A187057 .. A187060, A190800, A191456 ff.
KEYWORD
nonn
AUTHOR
M. F. Hasler, May 26 2016
EXTENSIONS
Edited and extended using A273756(0..100) due to Don Reble, by M. F. Hasler, Feb 17 2020
STATUS
approved
Least p for which min { x >= 0 | p + (2n+1)*x + x^2 is composite } reaches the (local) maximum given in A273770.
+10
4
41, 43, 47, 53, 61, 71, 83, 97, 113, 131, 151, 173, 197, 223, 251, 281, 313, 347, 383, 421, 461, 503, 547, 593, 641, 691, 743, 797, 73303, 73361, 73421, 73483, 3443897, 3071069, 3071137, 15949847, 76553693, 365462323, 365462399, 2204597, 9721, 1842719, 246407633, 246407719, 246407807, 246407897, 246407989
OFFSET
0,1
COMMENTS
All terms are prime, since this is necessary and sufficient to get a prime for x = 0.
The values given in A273770 are the number of consecutive primes obtained for x = 0, 1, 2, ....
Sequence A273595 is the subsequence of terms for which 2n+1 is prime.
For even coefficients of the linear term, the answer would always be q=2, the only choice that yields a prime for x=0 and also for x=1 if (coefficient of the linear term)+3 is prime.
The initial term a(n=0) = 41 corresponds to Euler's famous prime-generating polynomial 41+x+x^2. Some subsequent terms are equal to the primes this polynomial takes for x=1,2,3,.... This stems from the fact that adding 2 to the coefficient of the linear term is equivalent to shifting the x-variable by 1. Since here we require x >= 0, we find a reduced subset of the previous sequence of primes, missing the first one, starting with q equal to the second one. (It is known that there is no better prime-generating polynomial of this form than Euler's, see the MathWorld page and A014556. "Better" means a larger p producing p-1 primes in a row. However, the prime k-tuple conjecture suggests that there should be arbitrarily long runs of primes of this form (for much larger p), i.e., longer than 41, but certainly much less than the respective p. Therefore we speak of local maxima.)
LINKS
Eric Weisstein's World of Mathematics, Prime-Generating Polynomial
PROG
(PARI) A273756(n, p=2*n+1, L=10^(5+n\10), m=0, Q)={forprime(q=1, L, for(x=1, oo, ispseudoprime(q+p*x+x^2)&& next; x>m&& [Q=q, m=x]; break)); Q}
CROSSREFS
Cf. also A002837 (n such that n^2-n+41 is prime), A007634 (n such that n^2+n+41 is composite), A005846 (primes of form n^2+n+41), A097823, A144051, A187057 ... A187060, A190800, A191456 ff.
The first line of data coincides with that of A202018, A107448, A155884 (and also A140755, A142719, except for some initial terms), which are all related.
KEYWORD
nonn
AUTHOR
M. F. Hasler, May 26 2016
EXTENSIONS
Edited, following a remark by Don Reble, by M. F. Hasler, Jan 23 2018
a(27) corrected and more terms from Don Reble, Feb 15 2018
STATUS
approved
Max { min { x >= 0 | p + (2*n+1)*x + x^2 is composite }, p < 10^(5+n/10) }.
+10
4
40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 13, 12, 11, 10, 11, 12, 11, 12, 12, 13, 12, 12, 13, 16, 17, 16, 15, 14, 13, 13, 12, 11, 12, 13, 13, 14, 13, 13, 13, 12, 13, 14, 13, 14, 15, 14, 14, 13, 14, 14, 13
OFFSET
0,1
COMMENTS
The values for p are given in A273756 which is the main entry, see there for further information and (cross)references.
From the initial values, the sequence seems strictly decreasing, with a(n) = 40-n, however, this property does not persist beyond a(27) = 13.
The upper limit on p ensures that we have a well-defined sequence: The prime k-tuple conjecture predicts existence of arbitrarily long sequences of primes of the given form, and thus unbounded minimal value of x. However, the corresponding prime tuples are expected to appear for much larger values of p. The given limit should be understood as "below the first/next such prime tuple", and in general the values a(n) should not change if that limit would be increased by some orders of magnitude. There might be counterexamples, which would be interesting. The given limit was chosen for lack of a more natural expression, and is relatively small. It could be replaced by a more appropriate function of n if a proposal is available, which should not affect the values given so far. - M. F. Hasler, Jan 22 2018, edited Feb 17 2020
LINKS
FORMULA
a(n) = 40 - n for 0 <= n <= 27.
PROG
(PARI) {A273770(n, p=2*n+1, L=10^(5+n/10), m)=forprime(q=1, L, for(x=1, oo, ispseudoprime(q+p*x+x^2) || (x>m && !m=x) || break)); m}
CROSSREFS
KEYWORD
nonn,more
AUTHOR
M. F. Hasler, May 26 2016
EXTENSIONS
Corrected and extended by Don Reble, Feb 15 2018
STATUS
approved
Primes p such that the polynomial k^4 + k^3 + k^2 + k + p yields only primes for k = 0...5.
+10
3
7, 43, 79, 457, 877, 967, 1093, 2437, 2683, 3187, 5077, 5923, 7933, 8233, 11923, 12889, 15787, 17389, 19993, 31543, 41113, 41617, 42457, 71359, 77863, 80683, 91393, 101719, 102643, 105967, 107347, 120163, 129733, 137593, 151783, 170263, 175723, 197569, 210127
OFFSET
1,1
COMMENTS
All terms == 1 mod 6. - Robert Israel, Jan 11 2015
LINKS
EXAMPLE
a(1) = 7:
0^4 + 0^3 + 0^2 + 0 + 7 = 7;
1^4 + 1^3 + 1^2 + 1 + 7 = 11;
2^4 + 2^3 + 2^2 + 2 + 7 = 37;
3^4 + 3^3 + 3^2 + 3 + 7 = 127;
4^4 + 4^3 + 4^2 + 4 + 7 = 347;
5^4 + 5^3 + 5^2 + 5 + 7 = 787;
all six are primes.
MAPLE
select(p -> andmap(isprime, [p, p+4, p+30, p+120, p+340, p+780]), [seq(6*i+1, i=1..10^5)]); # Robert Israel, Jan 11 2015
MATHEMATICA
Select[f=k^4 + k^3 + k^2 + k; k = {0, 1, 2, 3, 4, 5}; Prime[Range[2000000]], And @@ PrimeQ[#+f] &]
Select[Prime[Range[20000]], AllTrue[#+{4, 30, 120, 340, 780}, PrimeQ]&] (* Harvey P. Dale, Dec 24 2023 *)
PROG
(PARI) forprime(p=1, 500000, if( isprime(p+0)& isprime(p+4)& isprime(p+30)& isprime(p+120)& isprime(p+340)& isprime(p+780), print1(p, ", ")))
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Jan 11 2015
STATUS
approved
Primes p such that the polynomial k^4 + k^3 + k^2 + k + p yields only primes for k = 0...6.
+10
3
43, 457, 967, 1093, 5923, 8233, 11923, 15787, 41113, 80683, 151783, 210127, 213943, 294919, 392737, 430879, 495559, 524827, 537007, 572629, 584557, 711727, 730633, 731593, 1097293, 1123879, 1138363, 1149163, 1396207, 1601503, 1739557, 1824139, 2198407, 2223853
OFFSET
1,1
LINKS
EXAMPLE
a(1) = 43:
0^4 + 0^3 + 0^2 + 0 + 43 = 43;
1^4 + 1^3 + 1^2 + 1 + 43 = 47;
2^4 + 2^3 + 2^2 + 2 + 43 = 73;
3^4 + 3^3 + 3^2 + 3 + 43 = 163;
4^4 + 4^3 + 4^2 + 4 + 43 = 383;
5^4 + 5^3 + 5^2 + 5 + 43 = 823;
6^4 + 6^3 + 6^2 + 6 + 43 = 1597;
all seven are primes.
MATHEMATICA
Select[f=k^4 + k^3 + k^2 + k; k = {0, 1, 2, 3, 4, 5, 6}; Prime[Range[2000000]], And @@ PrimeQ[#+f] &]
Select[Prime[Range[200000]], AllTrue[#+{4, 30, 120, 340, 780, 1554}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jan 10 2017 *)
PROG
(PARI) forprime(p=1, 1e6, if( isprime(p+0)& isprime(p+4)& isprime(p+30)& isprime(p+120)& isprime(p+340)& isprime(p+780)& isprime(p+1554), print1(p, ", ")))
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Jan 11 2015
STATUS
approved
Primes p such that the polynomial k^4 + k^3 + k^2 + k + p yields only primes for k = 0...7.
+10
3
43, 457, 967, 11923, 15787, 41113, 213943, 294919, 392737, 430879, 524827, 572629, 730633, 1097293, 1149163, 2349313, 2738779, 3316147, 3666007, 5248153, 5396617, 5477089, 7960009, 9949627, 10048117, 11260237, 11613289, 15281023, 16153279, 17250367, 18733807
OFFSET
1,1
LINKS
EXAMPLE
a(1) = 43:
0^4 + 0^3 + 0^2 + 0 + 43 = 43;
1^4 + 1^3 + 1^2 + 1 + 43 = 47;
2^4 + 2^3 + 2^2 + 2 + 43 = 73;
3^4 + 3^3 + 3^2 + 3 + 43 = 163;
4^4 + 4^3 + 4^2 + 4 + 43 = 383;
5^4 + 5^3 + 5^2 + 5 + 43 = 823;
6^4 + 6^3 + 6^2 + 6 + 43 = 1597;
7^4 + 7^3 + 7^2 + 7 + 43 = 2843;
all eight are primes.
MATHEMATICA
Select[f=k^4+k^3+k^2+k; k={0, 1, 2, 3, 4, 5, 6, 7}; Prime[Range[2000000]], And @@ PrimeQ[#+f] &]
Select[Prime[Range[12*10^5]], AllTrue[#+{4, 30, 120, 340, 780, 1554, 2800}, PrimeQ]&] (* Harvey P. Dale, Apr 24 2022 *)
PROG
(PARI) forprime(p=1, 1e8, if( isprime(p+0)& isprime(p+4)& isprime(p+30)& isprime(p+120)& isprime(p+340)& isprime(p+780)& isprime(p+1554)& isprime(p+2800), print1(p, ", ")))
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Jan 11 2015
STATUS
approved
Primes p such that the polynomial k^4 + k^3 + k^2 + k + p yields primes for k = 0..8, but not for k = 9.
+10
2
43, 967, 11923, 213943, 2349313, 3316147, 30637567, 33421159, 39693817, 49978447, 105963769, 143405887, 148248949, 153756073, 156871549, 172981279, 187310803, 196726693, 203625283, 211977523, 220825453, 268375879, 350968543, 357834283, 414486697, 427990369
OFFSET
1,1
COMMENTS
All the terms in this sequence are congruent to 1 (mod 3).
LINKS
Jon E. Schoenfield, Table of n, a(n) for n = 1..155 (terms < 2*10^10)
EXAMPLE
a(1) = 43:
0^4 + 0^3 + 0^2 + 0 + 43 = 43;
1^4 + 1^3 + 1^2 + 1 + 43 = 47;
2^4 + 2^3 + 2^2 + 2 + 43 = 73;
3^4 + 3^3 + 3^2 + 3 + 43 = 163;
4^4 + 4^3 + 4^2 + 4 + 43 = 383;
5^4 + 5^3 + 5^2 + 5 + 43 = 823;
6^4 + 6^3 + 6^2 + 6 + 43 = 1597;
7^4 + 7^3 + 7^2 + 7 + 43 = 2843;
8^4 + 8^3 + 8^2 + 8 + 43 = 4723;
all nine are primes, and
9^4 + 9^3 + 9^2 + 9 + 43 = 7423 = 13*571 is composite.
The next prime for p=43 appears for k=13, namely 30983.
MATHEMATICA
Select[Prime[Range[118*10^5]], AllTrue[#+{0, 4, 30, 120, 340, 780, 1554, 2800, 4680}, PrimeQ]&&CompositeQ[#+7380]&] (* Harvey P. Dale, Sep 10 2021 *)
PROG
(PARI) forprime(p=1, 1e10, if(isprime(p+4)&& isprime(p+30)&& isprime(p+120)&& isprime(p+340)&& isprime(p+780)&& isprime(p+1554)&& isprime(p+2800)&& isprime(p+4680) && !isprime(p+7380), print1(p, ", ")))
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Jan 18 2015
EXTENSIONS
Edited by Wolfdieter Lang, Feb 20 2015
Corrected and extended by Harvey P. Dale, Sep 10 2021
STATUS
approved

Search completed in 0.011 seconds