OFFSET
1,1
COMMENTS
Former title: Triangular form sequence made from a version of A082605 Euler extension.
REFERENCES
Advanced Number Theory, Harvey Cohn, Dover Books, 1963, Page 155
LINKS
G. C. Greubel, Rows n = 1..10 of the irregular triangle, flattened
FORMULA
T(n, k) = b(n) + k^2 + k + 1, where b(n) = A056486(n-1) - (1/2)*[n=1], for n >= 1 and 1 <= k <= b(n) - 1. - G. C. Greubel, Mar 23 2024
EXAMPLE
The irregular triangle begins as:
5;
7, 11, 17;
13, 17, 23, 31, 41, 53, 67, 83, 101;
19, 23, 29, 37, 47, 59, 73, 89, 107, 127, 149, 173, 199, 227, 257;
MATHEMATICA
(* First program *)
a[1] = 3; a[2] = 5; a[3] = 11; a[n_]:= a[n]= Abs[1-4*a[n-2]] -2;
euler= Table[a[n], {n, 10}];
Table[k^2 + k + euler[[n]], {n, 7}, {k, euler[[i]] -2}]//Flatten
(* Second program *)
b[n_]:= 2^(n-3)*(9-(-1)^n) - Boole[n==1]/2;
T[n_, k_]:= b[n] +k^2+k+1;
Table[T[n, k], {n, 8}, {k, b[n]-1}]//Flatten (* G. C. Greubel, Mar 23 2024 *)
PROG
(Magma)
b:= func< n | n eq 1 select 2 else 2^(n-3)*(9-(-1)^n) >;
A107448:= func< n, k | b(n) +k^2 +k +1 >;
[A107448(n, k): k in [1..b(n)-1], n in [1..8]]; // G. C. Greubel, Mar 23 2024
(SageMath)
def b(n): return 2^(n-3)*(9-(-1)^n) - int(n==1)/2
def A107448(n, k): return b(n) + k^2+k+1;
flatten([[A107448(n, k) for k in range(1, b(n))] for n in range(1, 8)]) # G. C. Greubel, Mar 23 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Roger L. Bagula, May 26 2005
EXTENSIONS
Edited by G. C. Greubel, Mar 23 2024
STATUS
approved