[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a247949 -id:a247949
     Sort: relevance | references | number | modified | created      Format: long | short | data
Primes p such that the polynomial k^4 + k^3 + k^2 + k + p yields primes for k = 0..8, but not for k = 9.
+10
2
43, 967, 11923, 213943, 2349313, 3316147, 30637567, 33421159, 39693817, 49978447, 105963769, 143405887, 148248949, 153756073, 156871549, 172981279, 187310803, 196726693, 203625283, 211977523, 220825453, 268375879, 350968543, 357834283, 414486697, 427990369
OFFSET
1,1
COMMENTS
All the terms in this sequence are congruent to 1 (mod 3).
LINKS
Jon E. Schoenfield, Table of n, a(n) for n = 1..155 (terms < 2*10^10)
EXAMPLE
a(1) = 43:
0^4 + 0^3 + 0^2 + 0 + 43 = 43;
1^4 + 1^3 + 1^2 + 1 + 43 = 47;
2^4 + 2^3 + 2^2 + 2 + 43 = 73;
3^4 + 3^3 + 3^2 + 3 + 43 = 163;
4^4 + 4^3 + 4^2 + 4 + 43 = 383;
5^4 + 5^3 + 5^2 + 5 + 43 = 823;
6^4 + 6^3 + 6^2 + 6 + 43 = 1597;
7^4 + 7^3 + 7^2 + 7 + 43 = 2843;
8^4 + 8^3 + 8^2 + 8 + 43 = 4723;
all nine are primes, and
9^4 + 9^3 + 9^2 + 9 + 43 = 7423 = 13*571 is composite.
The next prime for p=43 appears for k=13, namely 30983.
MATHEMATICA
Select[Prime[Range[118*10^5]], AllTrue[#+{0, 4, 30, 120, 340, 780, 1554, 2800, 4680}, PrimeQ]&&CompositeQ[#+7380]&] (* Harvey P. Dale, Sep 10 2021 *)
PROG
(PARI) forprime(p=1, 1e10, if(isprime(p+4)&& isprime(p+30)&& isprime(p+120)&& isprime(p+340)&& isprime(p+780)&& isprime(p+1554)&& isprime(p+2800)&& isprime(p+4680) && !isprime(p+7380), print1(p, ", ")))
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Jan 18 2015
EXTENSIONS
Edited by Wolfdieter Lang, Feb 20 2015
Corrected and extended by Harvey P. Dale, Sep 10 2021
STATUS
approved
a(n) is the smallest prime p such that the polynomial k^4 + k^3 + k^2 + k + p yields primes for k = 0..n-1, but not for k = n.
+10
0
2, 3, 13, 37, 109, 7, 1093, 457, 43, 430879, 130901527, 1838420599, 48181700197
OFFSET
1,1
EXAMPLE
At k=0, k^4 + k^3 + k^2 + k + p is, of course, prime for every prime p.
a(1)=2 because 2 is the smallest prime p such that 1^4 + 1^3 + 1^2 + 1 + p = 4 + p is not prime: 4 + 2 = 6 = 2*3.
a(2)=3 because 3 is the smallest prime p such that k^4 + k^3 + k^2 + k + p is prime for k=1 but not for k=2, i.e., such that 4 + p is prime but 2^4 + 2^3 + 2^2 + 2 + p = 30 + p is not prime: 4 + 3 = 7 is prime but 30 + 3 = 33 = 3*11.
a(6)=7 because 7 is the smallest prime p such that k^4 + k^3 + k^2 + k + p is prime for k = 1..5, but not for k = 6: 4 + 7 = 11, 30 + 7 = 37, 120 + 7 = 127, 340 + 7 = 347, and 780 + 7 = 787, but 1554 + 7 = 1561 = 7*223.
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Jon E. Schoenfield, Sep 11 2021
EXTENSIONS
a(13) from Jinyuan Wang, Sep 11 2021
STATUS
approved

Search completed in 0.006 seconds