[go: up one dir, main page]

login
Search: a181381 -id:a181381
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(0)=0, a(1)=1, a(n)=2 for n >= 2.
+10
24
0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
OFFSET
0,3
COMMENTS
a(n) is also total number of positive integers below 10^(n+1) requiring 9 positive cubes in their representation as sum of cubes (cf. Dickson, 1939).
A061439(n) + A181375(n) + A181377(n) + A181379(n) + A181381(n) + A181400(n) + A181402(n) + A181404(n) + a(n) = A002283(n).
a(n) = number of obvious divisors of n. The obvious divisors of n are the numbers 1 and n. - Jaroslav Krizek, Mar 02 2009
Number of colors needed to paint n adjacent segments on a line. - Jaume Oliver Lafont, Mar 20 2009
a(n) = ceiling(n-th nonprimes/n) = ceiling(A018252(n)/A000027(n)) for n >= 1. Numerators of (A018252(n)/A000027(n)) in A171529(n), denominators of (A018252(n)/A000027(n)) in A171530(n). a(n) = A171624(n) + 1 for n >= 5. - Jaroslav Krizek, Dec 13 2009
a(n) is also the continued fraction for sqrt(1/2). - Enrique Pérez Herrero, Jul 12 2010
For n >= 1, a(n) = minimal number of divisors of any n-digit number. See A066150 for maximal number of divisors of any n-digit number. - Jaroslav Krizek, Jul 18 2010
Central terms in the triangle A051010. - Reinhard Zumkeller, Jun 27 2013
Decimal expansion of 11/900. - Elmo R. Oliveira, May 05 2024
LINKS
Leonard Eugene Dickson, All integers except 23 and 239 are sums of eight cubes, Bulletin of the American Mathematical Society 45 (1939), p. 588-591.
Eric Weisstein's World of Mathematics, Waring's Problem.
FORMULA
G.f.: x*(1+x)/(1-x) = x*(1-x^2)/(1-x)^2. - Jaume Oliver Lafont, Mar 20 2009
a(n) = A000005(n) - A070824(n) for n >= 1.
E.g.f.: 2*exp(x) - x - 2. - Stefano Spezia, May 19 2024
MATHEMATICA
A130130[0]:=0; A130130[1]:=1; A130130[n_]:=2; (* Enrique Pérez Herrero, Jul 12 2010 *)
A130130[n_]:=ContinuedFraction[Sqrt[1/2], n+1][[n+1]] (* Enrique Pérez Herrero, Jul 12 2010 *)
Join[{0, 1}, LinearRecurrence[{1}, {2}, 96]] (* Ray Chandler, Sep 23 2015 *)
PadRight[{0, 1}, 120, {2}] (* Harvey P. Dale, Sep 15 2022 *)
PROG
(PARI) a(n)=min(n, 2) \\ Charles R Greathouse IV, Jun 01 2011
(Haskell)
a130130 = min 2
a130130_list = 0 : 1 : repeat 2 -- Reinhard Zumkeller, Jun 27 2013
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Aug 01 2007
STATUS
approved
Largest number whose cube has n digits.
+10
15
2, 4, 9, 21, 46, 99, 215, 464, 999, 2154, 4641, 9999, 21544, 46415, 99999, 215443, 464158, 999999, 2154434, 4641588, 9999999, 21544346, 46415888, 99999999, 215443469, 464158883, 999999999, 2154434690, 4641588833, 9999999999
OFFSET
1,1
COMMENTS
a(n) + A181375(n) + A181377(n) + A181379(n) + A181381(n) + A181400(n) + A181402(n) + A181404(n) + A130130(n) = A002283(n).
FORMULA
a(n) = ceiling(10^(n/3)) - 1. - Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 30 2003
EXAMPLE
a(5) = 46 because 46^3 = 97336 has 5 digits, while 47^3 = 103823 has 6 digits.
MAPLE
Digits := 100:
A061439 := n->ceil(10^(n/3))-1:
seq (A061439(n), n=1..40);
MATHEMATICA
t={}; i=0; Do[i=i+1; While[IntegerLength[i^3]<=n, i++]; AppendTo[t, i-1], {n, 20}]; t (* Jayanta Basu, May 19 2013 *)
CROSSREFS
a(n) is one more than the corresponding term of A018005. Cf. A061435.
KEYWORD
nonn,base,easy
AUTHOR
Amarnath Murthy, May 03 2001
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), May 16 2001
Typo in Maple program fixed by Martin Renner, Jan 31 2011
STATUS
approved
Total number of positive integers below 10^n requiring 8 positive cubes in their representation as sum of cubes.
+10
10
0, 3, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15
OFFSET
1,2
COMMENTS
Also continued fraction expansion of (9+sqrt(229))/74. - Bruno Berselli, Sep 09 2011
FORMULA
A061439(n) + A181375(n) + A181377(n) + A181379(n) + A181381(n) + A181400(n) + A181402(n) + a(n) + A130130(n) = A002283(n).
a(n) = 15 for n > 2. - Charles R Greathouse IV, Sep 09 2011
G.f.: 3*x^2*(1+4*x)/(1-x). - Bruno Berselli, Sep 09 2011
E.g.f.: 3*(5*(exp(x) - 1 - x) - 2*x^2). - Stefano Spezia, May 21 2024
MATHEMATICA
PadRight[{0, 3}, 100, 15] (* Paolo Xausa, May 24 2024 *)
PROG
(PARI) a(n)=if(n>2, 15, 3*n-3) \\ Charles R Greathouse IV, Oct 07 2015
KEYWORD
nonn,easy
AUTHOR
Martin Renner, Jan 28 2011
EXTENSIONS
a(5)-a(7) from Lars Blomberg, May 04 2011
STATUS
approved
Total number of positive integers below 10^n requiring 2 positive cubes in their representation as sum of cubes.
+10
9
2, 9, 41, 202, 938, 4354, 20330, 94625, 439959, 2045048, 9500746, 44124084, 204883131, 951202028, 4415710979, 20497646229, 95146359635
OFFSET
1,1
COMMENTS
A061439(n) + a(n) + A181377(n) + A181379(n) + A181381(n) + A181400(n) + A181402(n) + A181404(n) + A130130(n) = A002283(n).
LINKS
Eric Weisstein's World of Mathematics, Waring's Problem.
MAPLE
iscube:=proc(n) if root(n, 3)=trunc(root(n, 3)) then true; else false; fi; end:
isA003325:=proc(n) local x, y3; if iscube(n) then false; else for x from 1 do y3:=n-x^3; if y3<x^3 then return false; elif iscube(y3) then return true; fi; od; fi; end:
a:=proc(n) local i, k; i:=0; for k from 2 to 10^n-1 do if isA003325(k) then i:=i+1; fi; od: return(i); end:
for n from 1 do print(a(n)); od;
PROG
(PARI) a(n)=my(N=10^n, v=List(), x3); sum(x=1, sqrtnint(N-1, 3), x3=x^3; sum(y=1, min(sqrtnint(N-x3, 3), x), !ispower(x3+y^3, 3) && listput(v, x3+y^3))); #vecsort(v, , 8) \\ Charles R Greathouse IV, Oct 16 2013
CROSSREFS
Cf. A003325.
KEYWORD
nonn,more
AUTHOR
Martin Renner, Jan 28 2011
EXTENSIONS
a(6)-a(12) from Lars Blomberg, May 04 2011
a(13)-a(17) from Hiroaki Yamanouchi, Jul 12 2014
STATUS
approved
Total number of positive integers below 10^n requiring 3 positive cubes in their representation as sum of cubes.
+10
9
1, 15, 122, 1128, 10678, 103421, 1017326, 10077684, 100294216
OFFSET
1,2
COMMENTS
A061439(n) + A181375(n) + a(n) + A181379(n) + A181381(n) + A181400(n) + A181402(n) + A181404(n) + A130130(n) = A002283(n).
LINKS
Eric Weisstein's World of Mathematics, Waring's Problem.
CROSSREFS
Cf. A047702.
KEYWORD
nonn,more
AUTHOR
Martin Renner, Jan 28 2011
EXTENSIONS
a(5)-a(9) from Lars Blomberg, May 04 2011
STATUS
approved
Total number of positive integers below 10^n requiring 4 positive cubes in their representation as sum of cubes.
+10
9
1, 18, 242, 3343, 46683, 605489, 7221246, 80884939, 865304098
OFFSET
1,2
COMMENTS
A061439(n) + A181375(n) + A181377(n) + a(n) + A181381(n) + A181400(n) + A181402(n) + A181404(n) + A130130(n) = A002283(n).
LINKS
Eric Weisstein's World of Mathematics, Waring's Problem.
CROSSREFS
Cf. A047703.
KEYWORD
nonn,more
AUTHOR
Martin Renner, Jan 28 2011
EXTENSIONS
a(5)-a(9) from Lars Blomberg, May 04 2011
STATUS
approved
Total number of positive integers below 10^n requiring 6 positive cubes in their representation as sum of cubes.
+10
9
1, 18, 202, 1325, 3440, 3919, 3922, 3922, 3922
OFFSET
1,2
COMMENTS
A061439(n) + A181375(n) + A181377(n) + A181379(n) + A181381(n) + a(n) + A181402(n) + A181404(n) + A130130(n) = A002283(n)
LINKS
Eric Weisstein's World of Mathematics, Waring's Problem.
CROSSREFS
Cf. A046040.
KEYWORD
nonn,more
AUTHOR
Martin Renner, Jan 28 2011
EXTENSIONS
a(5)-a(7) from Lars Blomberg, May 04 2011
a(8)-a(9) from Hiroaki Yamanouchi, Sep 23 2014
STATUS
approved
Total number of positive integers below 10^n requiring 7 positive cubes in their representation as sum of cubes.
+10
9
1, 10, 73, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121, 121
OFFSET
1,2
COMMENTS
An unpublished result of Deshouillers-Hennecart-Landreau, combined with Lemma 3 from Bertault, Ramaré, & Zimmermann implies that a(4)-a(34) are all 121. Probably a(n) = 121 for all n > 3. - Charles R Greathouse IV, Jan 23 2014
LINKS
F. Bertault, O. Ramaré, and P. Zimmermann, On sums of seven cubes, Math. Comp. 68 (1999), pp. 1303-1310.
Eric Weisstein's World of Mathematics, Waring's Problem.
FORMULA
A061439(n) + A181375(n) + A181377(n) + A181379(n) + A181381(n) + A181400(n) + a(n) + A181404(n) + A130130(n) = A002283(n).
Conjectured g.f.: x*(1+9*x+63*x^2+48*x^3)/(1-x). - Colin Barker, May 04 2012
Conjectured e.g.f.: 121*(exp(x) - 1) - 120*x - 111*x^2/2 - 8*x^3. - Stefano Spezia, May 21 2024
KEYWORD
nonn,more
AUTHOR
Martin Renner, Jan 28 2011
EXTENSIONS
a(5)-a(7) from Lars Blomberg, May 04 2011
a(8)-a(34) from Charles R Greathouse IV, Jan 23 2014
STATUS
approved
Total number of n-digit numbers requiring 5 positive cubes in their representation as sum of cubes.
+10
8
1, 20, 272, 3549, 34234, 244503, 1454243, 7201405, 25018440
OFFSET
1,2
COMMENTS
A181354(n) + A181376(n) + A181378(n) + A181380(n) + a(n) + A181401(n) + A181403(n) + A181405(n) + A171386(n) = A052268(n)
FORMULA
a(n) = A181381(n)-A181381(n-1)
CROSSREFS
KEYWORD
nonn,more,base
AUTHOR
Martin Renner, Jan 28 2011
EXTENSIONS
a(5)-a(9) from Lars Blomberg, Jan 15 2014
STATUS
approved

Search completed in 0.010 seconds