[go: up one dir, main page]

login
A018005
Smallest number whose cube has n digits.
28
1, 3, 5, 10, 22, 47, 100, 216, 465, 1000, 2155, 4642, 10000, 21545, 46416, 100000, 215444, 464159, 1000000, 2154435, 4641589, 10000000, 21544347, 46415889, 100000000, 215443470, 464158884, 1000000000, 2154434691, 4641588834
OFFSET
1,2
COMMENTS
With offset 0, ((cube root of 10) to the power n) rounded up.
From Carmine Suriano, Mar 14 2020: (Start)
The terms corresponding to n = (20,21); (38,39); (41,42); (56,57); (59,60); (77,78); (80,81) ... are such that the square of first term starts with the digits of second term, and the square of second term starts with the digits of the first. For example, a(38)^2 = 2154434690032^2 = 4641588833613.... and a(39)^2 = 4641588833613^2 = 2154434690032...
(End)
LINKS
EXAMPLE
a(5) = 22, 22^3 = 10648 has 5 digits, while 21^3 = 9261 has 4 digits.
MATHEMATICA
Table[Ceiling[10^(n/3)], {n, 0, 40}] (* Vincenzo Librandi, Jan 09 2014 *)
PROG
(Magma) [Ceiling(10^(n/3)): n in [0..40]]; // Vincenzo Librandi, Jan 09 2014
CROSSREFS
Cf. A061434, A061439, and powers of cube root of k ceiling up: A017981 (k=2), A017984 (k=3), A017987 (k=4), A017990 (k=5), A017993 (k=6), A017996 (k=7), A018002 (k=9), this sequence (k=10), A018008 (k=11), A018011 (k=12), A018014 (k=13), A018017 (k=14), A018020 (k=15), A018023 (k=16), A018026 (k=17), A018029 (k=18), A018032 (k=19), A018035 (k=20), A018038 (k=21), A018041 (k=22), A018044 (k=23), A018047 (k=24).
Sequence in context: A360882 A053709 A102772 * A080522 A173232 A132332
KEYWORD
nonn,base,easy
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), May 16 2001
STATUS
approved